
2026/02/02 13:36 1/12 DHT-22 Air Temperature and Humidity Sensor

HSRW EOLab Wiki - https://wiki.eolab.de/

DHT-22 Air Temperature and Humidity
Sensor

1. About the Sensor Module

Even though the DHT-22 is a sensor used to determine air temperature and relative humidity, what it
actually measures are resistances and capacitances which are affected by temperature and humidity
of the air, respectively. The DHT-22 combines two different sensors and a little circuit board in one
device. The circuit board does calculations and also converts the analog output from the sensors to a
digital output signal which can be read from the DHT-22 Data-pin using, for example, the Adafruit DHT
sensor library.

In the monitoring station, the DHT-22 will be used to keep track of the air temperature and relative
humidity at the pond bank. The collected data will then be transmitted using WiFi to an MQTT Broker.

1.1 Measurement of the Temperature

The first sensor is the temperature sensor which mainly consists of a thermistor, a thermally sensitive
resistor. In figure 1, the thermistor is visible in the middle photo underneath the grid of the white
casing in the top right. There are two different types of thermistors: NTC thermistors (NTC- Negative
Temperature Coefficient) conduct electricity better the higher the temperature, that means their
resistance decreases with increasing temperature, typically at a rate of 3 to 6% per °K. The second
type of thermistors are PTC thermistors (PTC – Positive Temperature Gradient) whose resistance
increases with increasing temperature. Both types can be used in different applications, for example
to prevent peak currents, or limit the current during continuous operation. Because the change in
resistance due a change in temperature is predictable and reproducible, they are well suited for
measuring the temperature.

1.2 Measurement of the Humidity

The second sensor is the capacitive humidity sensor which is used for determining the relative
humidity of the air. The sensor consists of a capacitor which uses the air between the contacts as a
dielectric. The dielectric of a capacitor isolates the cathode and the anode from each other. The
capacitance of the capacitor with vacuum as a dielectric is denoted as C_0. The dielectric constant
κ of a material is the ratio of the capacitance C with the material as dielectric to C_0, so
$\kappa=C/C_0$ or the ratio of the Electric field strength between anode and cathode in vacuum to
the electric field strength with the dielectric $\kappa=E_0/E$. That means for vacuum κ
equals 1, and the dielectric constant for any material is greater than that. For dry air, the dielectric
constant equals 1.00059, which is close to vacuum, so the capacitance is almost the same as in
vacuum when the air is dry. For water, the dielectric constant equals approximately 80. With
increasing moisture, the dielectric constant of the air increases, which also increases the capacitance
of the capacitor. When the sensor is calibrated correctly, it is possible to assign a certain value for the
actual vapor density of the air to a certain value of the capacitance. The relative humidity is the ratio
of the actual vapor density to the saturation vapor density in percent. The saturation vapor density

Last update: 2021/08/24 17:34 amc2020:group_n:dht22 https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

https://wiki.eolab.de/ Printed on 2026/02/02 13:36

increases exponentially with increasing temperature. To calculate the relative humidity, it is thus
necessary to also measure the temperature to obtain the current saturation vapor density of the air.
In the DHT-22, temperature compensation technology is applied to account for the change in
saturation vapor density due to temperature changes to give as accurate results for the relative
humidity as possible.

Figure 1 DHT-22 Temperature and Humidity Sensor and pins.

2. Data Transmission

The communication between the DHT-22 and the microcontroller (MCU) occurs only via the 1-Wire
data-bus connecting an MCU-pin and the Data-pin (Pin 2 in figure 1) of the DHT-22. The 1-Wire bus for
the DHT-22 is specifically designed for DHT-xx sensors and is not compatible with the Dallas 1-wire
bus used for the DS18B20 temperature sensors. In fact, the data-bus allows only the connection of 1
DHT-22 with an MCU. This is the case because, in this system, the sensors do not have individual
addresses, like in the Dallas 1-Wire data-bus or in an I²C-bus. Connecting multiple DHT sensors with
one data-bus, will result in all the sensors sending and occupying the only available connection at
once, making data transmission impossible. The communication follows a fixed protocol which can be
seen in figure 2 below:

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:dht-22_pins.png

2026/02/02 13:36 3/12 DHT-22 Air Temperature and Humidity Sensor

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 2 Schematic of the DHT-22 communication protocol and logic '0' and logic '1'. The black line
represents signals by the microcontroller, the grey line represents signals by the DHT-22.

2.1 Communication Protocol

During the seven steps, indicated in figure 2, the following happens:

If the DHT-22 is ready to receive commands, the voltage level of the data-bus is high. When the1.
MCU requests temperature and humidity, it pulls the data-bus to GND, which is the starting
signal for communication between sensor and MCU. The signal is kept low for at least 1 – 10ms,
to make sure that the DHT-22 detects the signal.
Afterwards the MCU pulls the voltage level high for 20 – 40 us while waiting for the response of2.
the DHT-22.
If the DHT-22 has detected the signal, it will send a response signal by pulling the data-bus low3.
for 80 us.
Then it pulls the data-bus to a high voltage level for another 80 us while measuring the4.
temperature and humidity and preparing the transmission of data.
During this phase, the actual data are transmitted bitwise. Both, a logical 1 and a logical 0, start5.
with a 50 us low signal. The duration of the following high signal determines whether it is to be
interpreted as a 1 or a 0. If it is a 0, the signal is pulled high for 26 – 28 us, and if it is a 1, it is
pulled high for 80 us. The duration of the complete transmission differs depending on the values
that are transmitted. A signal consisting mostly of logical 1s, will need more time than one
mainly consisting of 0s.
When all 40 bits are transmitted, the sensor will pull the signal to low voltage level. The6.

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:dht-22_data_bus.png

Last update: 2021/08/24 17:34 amc2020:group_n:dht22 https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

https://wiki.eolab.de/ Printed on 2026/02/02 13:36

transmitted data can then be read by the MCU using the DHT library.
To end the transmission, the MCU then pulls the data-bus to a high logical level again. The7.
DHT-22 goes into stand-by mode until it receives another starting signal.

2.2 Data Transfer

As mentioned before, the data that is transmitted consists of 40 bits. 2 bytes for the relative humidity,
2 bytes for the temperature and 1 byte (check-sum) to check for finding errors in the transmission.
The principle becomes clearer when looking at an example transmission:

$\mathrm{0000\; 0010\; 1000\; 1100\;\; 0000\; 0001\; 0101\; 1111\;\; 1110\; 1110}$
 Humidity (1) | Temperature (2) | Check-sum (3)

Humidity1.

The first two bytes contain the relative humidity data, converted to decimal, that gives:
\[\mathrm{0000\; 0010\;\; 1000\; 1100_{2}} → 652_{10}\] To obtain the relative humidity RH
in percent, the value must be divided by 10:
\[RH = \frac{\mathrm{652}}{\mathrm{10}} = \mathrm{65.2\;\%}\]

Temperature2.

For the temperature it works in a similar way. The binary gets converted to decimal and is
divided by 10 to obtain the temperature in °C:
\[\mathrm{0000\; 0001\;\; 0101\; 1111_2 → 351_{10}}\] \[T = \mathrm{\frac{351}{10} = 35.1
°C}\] Unlike relative humidity, the temperature can be below 0 (negative). If that is the case,
the first digit of the first temperature byte (byte 3) is a 1.

Check-sum3.

The last byte contains the 8 least significant bits (LSB) of the sum of both humidity and both
temperature bytes:
\[\mathrm{0000\; 0010 + 1000\; 1100 + 0000\; 0001 + 0101\; 1111 = 1110\; 1110}\] After
receiving the data, if the last byte (check-sum) is different from the 8 LSBs of the sum of the
other 4 bytes, there was an error in the transmission. The MCU can thus check if the data was
transmitted correctly.

3. Technical Specifications and Setup of the Sensor

The DHT-22 comes with 4 pins and can be plugged into a breadboard. Pin 1 (VDD) is connected to the
power supply, pin 2 (DATA) is the 1-wire data-bus and is connected to GPIO 15, pin 3 (NC) is not
connected, and pin 4 (GND) is connected to 0 Volts (figure 3). Information on the technical
specifications can be found in table 1.

2026/02/02 13:36 5/12 DHT-22 Air Temperature and Humidity Sensor

HSRW EOLab Wiki - https://wiki.eolab.de/

Table 1 Technical specifications, sensor accuracy and ranges
Model AM3202
Power Supply 3.3 - 5.5 V DC
Current (3.3V) Measuring: 1mA Stand-by: 50μA
Power Consumption (3.3V) Measuring: 3.3 mW Stand-by: 0.165mW
Output signal Digital signal using a 1-wire bus
Sensing element Polymer humidity capacitor Thermistor
Operating range 0 - 100 % RH -40 - 80 °C
Accuracy \pm 2 % RH \pm 0.5 °C
Resolution/sensitivity 0.1 % RH 0.1 °C
Repeatability \pm 1 % RH \pm 0.2 °C

The specifications are also available in the AM2302 Datasheet.

3.1 Pullup Resistors

The data-bus is pulled to high potential using a 4.7kΩ pullup resistor connecting the data-bus and the
VDD pin. The pullup resistor is already included in the DHT-22 sensor module. So, the module already
works when the sensor is just connected like described above. Furthermore, the ESP32, just like the
Arduino, has built-in pullup and pulldown resistors. The values for the pullup resistors vary from
module to module and from pin to pin but are typically in the range of 30 – 80 kΩ. When creating an
object from the DHT.h-library that represents the DHT-22, the number of the GPIO pin is given as an
argument. To start the sensor, the method begin() is executed; this function configures the pin as an
input and activates the ESP32’s internal pullup resistor for that pin. So, in reality, two pullup resistors,
one from the DHT-22 and one from the ESP32 are used. The total pullup-resistance between the data-
bus and VDD can thus vary between:

$$R_{min}=\left(\frac{1}{30000\Omega}+\frac{1}{4700\Omega}\right)^{-1}=4063.4\Omega$$
and
$$R_{max}=\left(\frac{1}{80000\Omega}+\frac{1}{4700\Omega}\right)^{-1}=4439.2\Omega$$

When the sensor data pin and the GPIO of the ESP32 are connected through a longer cable (>50cm),
it is advisable to use another external pullup-resistor. This is due to the fact that the wire acts as a
capacitor, and the longer the wire is, the larger the capacitance. After a 0V pulse, the wire-capacitor
has to be charged again before the data-bus reaches the full 3.3V potential. That means, instead of
having a clean pronounced voltage signal, which can be interpreted as a 0 or 1, the signal looks like
the charging curve of a capacitor (see figure 4). The longer the cable, the larger the capacitance
resulting in a longer charging time and a less pronounced signal, which may lead to errors in the
communication. Adding another external pullup resistor, for example a 10kΩ resistor, decreases the
total pullup-resistance, because the resistors are connected in parallel. The new minimum and
maximum resistances are thus:

$$R'_{min}=\left(\frac{1}{30000\Omega}+\frac{1}{4700\Omega}+\frac{1}{10000\Omega}\right)
^{-1}=2889.3\Omega$$ and
$$R'_{max}=\left(\frac{1}{80000\Omega}+\frac{1}{4700\Omega}+\frac{1}{10000\Omega}\right)
^{-1}=3074.4\Omega$$

As the total pullup resistance decreases, the current increases and the wire-capacitor is charged
faster (that means 3.3V on the data-bus is reached faster as well), which steepens the charging curve

https://wiki.eolab.de/lib/exe/fetch.php?tok=e633bf&media=https%3A%2F%2Fcdn-shop.adafruit.com%2Fdatasheets%2FDigital%2Bhumidity%2Band%2Btemperature%2Bsensor%2BAM2302.pdf

Last update: 2021/08/24 17:34 amc2020:group_n:dht22 https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

https://wiki.eolab.de/ Printed on 2026/02/02 13:36

of the capacitor and thus makes the signal more “square”, so it is more pronounced and leads to less
errors during communication between MCU and DHT-22. This effect is demonstrated in figure 4 and
also occurs for other wire-connected bus-systems like I²C.

Figure 4 Schematic of how different pullup resistances affect the voltage-time-curve of high voltage
level pulses when the wire length is high.

3.2 Other Issues and Problems that occurred

During the setup and testing of the DHT-22, some issues to be considered are:

3.2.1 Instable Phase

After supplying power to the DHT-22, the sensor has an unstable status, which requires the user to
wait for one second until further commands can be sent.

3.2.2 Sampling Rate

As the sensor consumes more power during measurements, it is prone to heating up and thus
influencing the measured temperature. To ensure that the measurements are not adulterated by the
sensor heating up, it is required to keep the sampling rate at a maximum of 0.5 Hz, so 1
measurement every 2 seconds.

3.2.3 Upload-issues using the ESP32 DevkitC VB

When using the ESP32 instead of an Arduino, the Arduino IDE can give a time out error (figure 5)
during the upload if the DHT-22 is already connected to the ESP32:

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:dht-22_signal_pullup_resistance.png

2026/02/02 13:36 7/12 DHT-22 Air Temperature and Humidity Sensor

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 5 Time out error during upload of code to the ESP32 DevkitC VB with the DHT-22 connected to
it.

This seems to be an issue caused by the power supply to the DHT-22 during the upload process.
Other users reported to have fixed the problem by

pressing and holding down the “Boot”-button on the ESP32 board when the computer tries to
connect with the ESP32.
using an additional power supply and connecting a 3.3V voltage source to the Vin pin of the
ESP32.

However, in our experiments, the only approach that worked was to

either remove the DHT-22 completely from the breadboard during upload, or
only disconnect the voltage supply from the DHT-22’s VDD pin.

4. Programming the DHT-22

In this sketch the DHT-sensor-library from Adafruit was used to communicate with the DHT-22 and
obtain the measurement results.

The following code is only part of the complete code that was uploaded to the ESP32 later on. The aim
of this code was to test the DHT-22 with the ESP32 and create a function, that can later be easily
implemented into the final code. It contains the function (measureDHTTemHum()) to be implemented
later, the necessary variables, definitions and libraries. When the ESP32 with this code is connected to
the computer via USB, it measures the temperature and humidity in 2 second intervals, averages the
measurements to get more accurate results and prints it to the Arduino IDE's serial monitor.

4.1 Code

ESP32_DHT-22_Test.ino

//DHT 22 Temperature and Relative Humidity Reading Function

//Definitions
#define DHTTYPE DHT22 //1
const int DHTPIN = 15; //2

//Libraries & Objects
#include <DHT.h> //3

DHT dht(DHTPIN, DHTTYPE); //4

//Variable Declaration/Initialization

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:upload_error_message.png
https://github.com/adafruit/DHT-sensor-library
https://wiki.eolab.de/doku.php?do=export_code&id=amc2020:group_n:dht22&codeblock=0

Last update: 2021/08/24 17:34 amc2020:group_n:dht22 https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

https://wiki.eolab.de/ Printed on 2026/02/02 13:36

float dht22AirTem = 0; //5
float dht22AirTemSum = 0;
String dht22Temperature = "";

float dht22RelHum = 0;
float dht22RelHumSum = 0;
String dht22Humidity = "";

void setup()
{
 delay(5000); //6

 Serial.begin(115200); //7
 Serial.println("Measurement is starting ...");
}

void loop()
{
 Serial.println("Measuring ...");
 measureDHTTemHum(5);
//8
 Serial.println("Temperature: " + dht22Temperature + " °C");
//9
 Serial.println("Relative Humidity: " + dht22Humidity + " %");
 Serial.println("==============================");
 delay(2000);
//10
}

void measureDHTTemHum (byte AveragingNumber)
//11
{
 delay(1000);
//12
 dht.begin();
//13

 dht22AirTemSum = 0;
//14
 dht22RelHumSum = 0;
 dht22Temperature = "";
 dht22Humidity = "";
 for (byte i = 0; i < AveragingNumber; i++)
//15
 {
 do {
//16
 dht22AirTem = dht.readTemperature();
//17
 dht22RelHum = dht.readHumidity();
 if (!isnan(dht22AirTem) && !isnan(dht22RelHum))

2026/02/02 13:36 9/12 DHT-22 Air Temperature and Humidity Sensor

HSRW EOLab Wiki - https://wiki.eolab.de/

//18
 {
 dht22AirTemSum += dht22AirTem;
//19
 dht22RelHumSum += dht22RelHum;
 }
 else
 delay(2000);
//20
 } while (isnan(dht22AirTem) || isnan(dht22RelHum));
//21
 if (i < (AveragingNumber - 1))
//22
 delay(2000);
 }
 dht22AirTem = dht22AirTemSum / AveragingNumber;
//23
 if(dht22AirTem<10)
//24
 dht22Temperature = '0';
 dht22Temperature = dht22Temperature + dht22AirTem;
//25

 dht22RelHum = dht22RelHumSum / AveragingNumber;
 if(dht22RelHum<10)
 dht22Humidity = '0';
 dht22Humidity = dht22Humidity + dht22RelHum;
}

4.2 The Code explained

In the following the different sections of the code are explained in more detail:

The library DHT.h can also be used to communicate with the DHT-11, a smaller, less accurate,1.
but faster module. It is necessary to give the type of DHT sensor when the object of class DHT is
created (4). Defining the type at the top makes it easier to change between the different
modules. Because in this case the DHT-22 is used, DHTTYPE is defined as DHT22.
Here the GPIO pin used in the data-bus is chosen, also to make changing the pin easier and2.
faster.
To make the sketch the aforementioned library DHT.h must be installed and included.3.
The object dht, representing the DHT-22 sensor, is created as an instance of the class DHT,4.
provided by the library. During object creation, the GPIO pin (2) and the sensor type (1) must be
given as arguments.
Here the necessary variables are declared and initialized, for the temperature and humidity5.
measurements, respectively. The first float variable (dht22AirTem & dht22RelHum) is used to
take up the sensor values and later the final averaged value. The second float variable
(dht22AirTemSum & dht22RelHumSum) are used to store the sum of the measurements which
then is averaged over the number of measurements. The String object (dht22Temperature &
dht22Humidity) are used later for printing the data and sending it with MQTT (not included in

Last update: 2021/08/24 17:34 amc2020:group_n:dht22 https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

https://wiki.eolab.de/ Printed on 2026/02/02 13:36

the sketch).
If the power supply or the DHT-22 was disconnected due to the issues described in section6.
3.2.3, there is now some time to connect it again. This is only for the testing of the sensor.
The Serial connection is started to check the sensor values using the serial monitor.7.
The function measureDHTTemHum(), which is defined below (11), is executed. As an argument8.
it expects the number of measurements which should be taken and averaged. A 1, will just give
the result of 1 measurement. A 2 results in 2 measurements being taken, which are then
summed up and divided by 2 to get the mean of the values. Increasing the number gives thus
more accurate results (by reducing the influence of possible outliers due to measurement
errors) but also increases the time necessary by a bit more than 2 seconds per additional
measurement. In this case, 5 measurements are taken and averaged which means the function
needs approximately 8 seconds.
Here the values are plotted in the serial monitor. To plot the data, the string objects (5) are9.
used.
The delay of 2 seconds is included, because the function is just looping all the time. In the10.
function, the 2 second break is only included until the final measurement is taken to save time
in the real application later on, where the function is not looping almost continuously (22).
The function measureDHTTemHum() is declared. This function is to be included in the real11.
application later on. The function does not have any return value, it just actualizes the values
stored in the variables declared in the beginning. As mentioned before, it expects a variable of
the type byte (Averaging Number), which gives the number of measurements which should be
taken.
In the final application, the DHT-22 will not be supplied power continuously, but only when it is12.
needed to measure. The rest of the time it will be shut down to save power as in stand-by mode
there is still a 40 uA current if power is supplied. After supplying power to the DHT-22 VDD pin,
the sensor is in an instable phase (section 3.2.1) which needs 1 second to pass, therefor the
delay.
The method begin() of the object dht declares the GPIO pin used as an input and activates the13.
pullup, which is necessary for the communication between MCU and sensor that follows. It also
resets a counter variable used in the library’s code.
The value of the sum variables is reset to 0 and the string objects are emptied. The first float14.
variable does not need to be reset, because it gets overwritten during each measurement
anyways.
The for-loop repeats the loop-body (the measurements) as many times as the number given as15.
function argument (AveragingNumber).
For the measurements, a do-while-loop is used, because it is necessary to measure at least16.
once. It is possible that the measurements are erroneous, in that case, the measurement is
repeated (21).
The values for the float variables are overwritten by the current measurement results obtained17.
by the readTemperature() and readHumidity() methods of the dht object.
The function isnan() (IS Not A Number) gives back a 1 if the measurement was erroneous and18.
did not yield a proper result. If the measurement was successful it returns a 0. In this if-
statement the condition is defined as whether both (logical and - &&) of the measurements
were successful. If both measurements were successful, isnan() returns a 0 for each of them;
the 0 is turned to a 1 by the logical not (!) in front. Thus, if both measurements gave proper
results, the condition is true.
If that is the case the values obtained from the measurements (dht22AirTem & dht22RelHum)19.
are added to the sum of the values.
Otherwise, if the measurements were erroneous, there is a delay of 2 seconds, as a cool-down20.
for the temperature sensor, so that another measurement can be taken.
The while condition of the do-while-loop tests if any of the 2 measurements were erroneous. If21.

2026/02/02 13:36 11/12 DHT-22 Air Temperature and Humidity Sensor

HSRW EOLab Wiki - https://wiki.eolab.de/

that is the case, the loop starts again. If both the measurements were good, the loop is exited.
This if control structure tests if the last measurement was taken already. If that is not the case,22.
a delay of 2 seconds is done as a cool-down for the sensor, so another measurement can be
taken afterwards. For example: if the averaging number is 3, and the third successful
measurement was taken, i = 2 (because the increment happens after the execution of the
statement of the for-loop). The averaging number minus 1 equals 2, which is not bigger than i.
So, the delay of 2 seconds is omitted. i then gets incremented to 3, which does not fulfill the for-
loop condition, so the loop is exited. During the final application, the sensor will be powered off
again after executing the measurement function once, so it does not need a cool-down phase
after the last measurement is done. To conclude, the if statement saves 2 seconds of time
during the final project. In this code, the function loops constantly, therefore the 2 seconds
delay in the main loop were necessary (10).
Here the measurement readings are averaged by dividing their sum by the number of23.
measurements.
If the temperature drops below 10°C or the relative humidity below 10%, a leading 0 is added to24.
the string objects. This way, the delivered string always has the same length which makes
reading and transmitting the data later on easier.
To the string object, the averaged measurement results are added. The string can then be used25.
for printing to the serial monitor or for transmitting data through MQTT.

4.3 Results

As can be seen in the code (code section 1) a DHT-22 was used for testing and its data pin was
connected to the GPIO pin 15 of the ESP32 DevkitC VB. As explained before, no additional pullup
resistor was necessary.

After uploading, the code, the power supply to the DHT-22 was connected: 3.3V to VDD and GND to
GND. After 5 seconds, the following was printed to the serial monitor:

15:54:35.854 -> Measurement is starting ... //1
15:54:35.854 -> Measuring ... //2
15:54:44.864 -> Temperature: 23.70 °C //3
15:54:44.864 -> Relative Humidity: 49.82 % //4
15:54:44.864 -> ============================== //5
15:54:46.904 -> Measuring ... //6
15:54:55.934 -> Temperature: 23.76 °C //7
15:54:55.934 -> Relative Humidity: 48.16 % //8
15:54:55.934 -> ============================== //9

Even though the resolution of the measurements is just 0.1 °C and 0.1 % RH (table 1), the values
printed in the serial monitor have numbers other than 0 in the second decimal place; this is due to the
values being averaged in the function. The measurements were taken in a living room, so
temperature and humidity measurements yielded plausible results.

When observing the timestamps on the left, it is possible to see what was happening in the MCU.
After the measurement began (line 2), the MCU needed another 9.01 seconds to print the results in
the serial monitor (line 3, 4, 5).

1 second came from the delay (code section 12) to pass the unstable status.
8 seconds came from the delay (code section 22) as a cool-down for the thermistor.

Last update: 2021/08/24 17:34 amc2020:group_n:dht22 https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

https://wiki.eolab.de/ Printed on 2026/02/02 13:36

0.01 seconds were necessary for the MCU to execute the remaining code

For 5 measurements being taken, the minimum delay time is 1 + 8 = 9 seconds. That means, that no
improper results were obtained and the do-while loop was only executed once per execution of the
for-loop statement.

Between the printing of the results (line 3, 4, 5) and the start of the next measurement process (line
6) a time difference of 2.04 seconds could be observed. 2 seconds are due to the delay in the main
loop (code section 10), the rest is due to the print() functions which consume comparably much time.

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:
https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

Last update: 2021/08/24 17:34

https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22&rev=1595961952

	DHT-22 Air Temperature and Humidity Sensor
	1. About the Sensor Module
	1.1 Measurement of the Temperature
	1.2 Measurement of the Humidity

	2. Data Transmission
	2.1 Communication Protocol
	2.2 Data Transfer

	3. Technical Specifications and Setup of the Sensor
	3.1 Pullup Resistors
	3.2 Other Issues and Problems that occurred
	3.2.1 Instable Phase
	3.2.2 Sampling Rate
	3.2.3 Upload-issues using the ESP32 DevkitC VB

	4. Programming the DHT-22
	4.1 Code
	4.2 The Code explained
	4.3 Results

