2026/02/02 04:42 1/12 SN74HC595(N) Shift Register

↩ Back to the main page

SN74HC595(N) Shift Register

1. About the Module

As the monitoring station should be more or less self-sustainable later on, an important factor to
consider is the power consumption of the devices. There are different sources of power losses that
drain the batteries of the station over time. One such loss is the current that flows through the VDD
pins to GND in the sensors while they are not used. This power loss could be lowered if the power
supply would be just activated when the sensor is actually in use.

This could be done using a simple transistor. However, with a transistor, one GPIO pin of the MCU
would be used for each device that is powered individually. When the number of sensors increase, the
available GPIOs rapidly decrease. The same would be true for directly using GPIOs to power the
sensors which should always be avoided; one reasons for that is, that the GPIOs can only supply a low
current and do not have as stable voltage levels as the 3.3V pin.

Another method is to use a shift register, such as the SN74HC595 (figure 1). That is a small integrated
circuit (IC) which transforms a digital serial input into a digital parallel output. The SN74HC595
contains a shift register and a storage register of the size of 1 byte and possesses 8 parallel output
pins. To operate the device 3 GPIO pins of the MCU are needed, one pin for transmitting the data
(data, DS, SER), one pin for the clock signal of the shift register (clock, SHCP, SRCLK) and another one
as clock signal for the storage register (latch, STCP, RCLK). The advantage of the shift register is that
with only 3 GPIO pins, 8 output pins can be controlled at the same time individually. Furthermore, the
IC has another output for serial data which can be connected to the serial input (data pin) of another
shift register. This allows for the cascading, that means connecting many ICs in series, of the
SN74HC595; so, with only 3 pins a large number of outputs can be managed.

HSRW EOLab Wiki - https://wiki.eolab.de/

https://wiki.eolab.de/doku.php?id=amc2020:group_n:start

Last update:

2021/08/24 17:34 amc2020:group_n:sn74hc595n https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

s B e B

8
L
LY . y

LS | ¥
= ", 4

Figure 1 SN74HC595(N) Shit Register‘ énd pinodt.

2. Working Principle

The MCU issues a clock signal (SRCLK) to the shift register and sends the data (SER) bitwise in 8-bit
groups to the shift register (figure 2). If afterwards another byte is sent, the shift register outputs the
first byte through the serial output pin (QH’), which may be connected to another shift register
receiving the data. So, the shift register always stores the latest byte and if it receives a new byte, it
shifts the old one to the next shift register.

The byte stored in the shift register is transferred to the storage when a high voltage level signal is
sent to the storage register through the storage register clock input (RCLK). The byte stored in the
storage register defines which output pins should be active and which ones should be inactive. When
the output enable pin (OE) is set to GND, the byte from the storage register is used as output on the
output pins. When the output enable pin is high, the three-state outputs are in high impedance state,
blocking all current through the output pins.

It can happen that the outputs from the shift register are random when for example uploading code or
resetting the MCU. To reset the pins and stop any high output, the master reset pin (MR, SRCLR) must
be shorted to ground. This can be done for example by connecting a >1 uF capacitor between GND
and SRCLR and a 10kQ resistor between SRCLR and VDD. After powering up, the capacitor acts as a
short circuit to ground resetting the outputs and as soon as it is charged, it acts as an open circuit and
the potential of the master reset is high.

https://wiki.eolab.de/ Printed on 2026/02/02 04:42

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:shift_register_foto.png

2026/02/02 04:42 3/12 SN74HC595(N) Shift Register

Serial
Qe / Q2 —1 16— voD FEE% | SER* - Qa
Qc/Qs —{2 15— Q1/Qa R
Qo /Q4 —3 14— Data /DS /SER 2 Qo | Parallel
Qe/Qs —{4 13— OE Vee 16 Shift Storage —-Qe [Zio
QF/Qs —5 12— Latch/STCP/RCLK GND Register Register—-Qr
Qe/Qr —6 11— Clock / SHCP / SRCLK /'Latch _?g‘j
QH/ Qs —7 10— MR /SRCLR
GND —8 9 Qg'/QH' SRCLK 1 —| —
' eria
SRCLR & i QH' ! Data
RCLK 12 Output
OE 13

Figure 2 SN74HC595(N) pinout diagram (left) and logic diagram (right), there are different names
and abbreviations for the pins depending on the source; the labels in the logic diagram are the official
ones from the datasheet (also see table 2).

3. Technical Specifications and Setup of the Module

The ESP32 can supply 3.3V, which is in the recommended operating range of the SN74HC595 (table
1). The shift register consumes a maximum of 80 yA which occurs at a supply voltage of 6 V while the
shift register is actively used; that means during data transmission or transfer from shift register to
storage register. Normally the module consumes much less current. The DHT-22 alone consumes 50
MA during idle state continuously which is much higher than the current in the idle shift register. The
more sensors are connected to the shift register, the higher the efficiency of the sensor/shift register
combination and the more energy can be saved.

It is important to note that the continuous output current should be limited to a maximum of 70 mA.
As the voltage drops when more current is drawn, the current should be limited to about 5 mA per
pin. As both the DHT-22 and the DS18B20 only use about 1.5 mA during measuring, this is not an
issue.

An overview over the pins and what they do can be found in table 2. When setting up the module the
notch helps orienting the shift register in the right direction. The pins were connected the following
way:

* VDD to 3.3V

e GND to GND

e OE to GND

e SRCLR to 3.3V

¢ SRCLK to GPIO 4
e RCLK to GPIO 2
e SER to GPIO 0

Furthermore, a small ceramic capacitor (104 pF) was added between VDD and GND with the legs of
the capacitor as close to the pin as possible to reduce the inductance of the wire as much as possible.
As mentioned before, the shift register draws most current in very short pulses when the data are
shifted, or the byte is transferred to the storage register. In this situation it can be advantageous to
have a small capacitor which can supply additional current to keep the voltage from dropping too low.

The parallel outputs can be connected to any device operated at 3.3 V which draws less than 5 mA.
To test the working principle of the shift register, the outputs can be connected to red LEDs with a
sufficient resistor in series:

HSRW EOLab Wiki - https://wiki.eolab.de/

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:shift_register_pinout_and_logic_diagram.png

Last update:
2021/08/24 17:34

$$R=\frac{V_{DD}-U F}{l {LED}}=\mathrm{\frac{3.3V-1.7V}{0.005A}=320\0Omega}$$

amc2020:group_n:sn74hc595n https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

The next bigger resistor (usually 330Q) should be used. After testing, in the real application, the VDD
pin of the DHT-22 and the VDD pins of the DS18B20s were connected to the output pins QB and QC.
The power for the sensors was thus supplied through the output pins of the shift register.

Table 1 SN74HC595(N) specifications

Module SN74HC595(N) Shift Register
Supply VoltageVDD [2-6V

Operating Temperature|-40 - 125 °C

Power consumption 80 pA (max at 6V)

Further information can be found in the SN74HC595 datasheet.

Table 2 SN74HC595(N) pin overview and description
Pin|Label |Alternative Labels Description

1 |QB Q2 Parallel Output 2

2 |QC Q3 Parallel Output 3

3 |QD |Q4 Parallel Output 4

4 |QE Q5 Parallel Output 5

5 |QF Q6 Parallel Output 6

6 |QG Q7 Parallel Output 7

7 |QH Q8 Parallel Output 8

8 |GND |- Ground (0 V)

9 |QH" Q% Serial Data Output

10 |[SRCLR|MR Shift Register Clear / Master Reset
11 |SRCLK|Clock / SHCP Shift Register Clock

12 |[RCLK |Latch /STCP Storage Register Clock

13 |OE - Output Enable

14 |SER |Data /DS Serial Data Input

15 |QA Ql Parallel Output 1

16 (VDD |- Power Supply (3.3V)

4. The Code

The following code is to test the function of the shift register with LEDs to see if it is working properly.
To see the sketch working, the shift register needs to be connected as described above and red LEDs
have to be connected with a 330Q resistor in series to the pins QA, QB and QC.

4.1 Code for the Shift Register

ShiftRegisterFunction.ino

//ESP32 74HC595 Shift Register Test with LEDs

//ESP32 PINS

https://wiki.eolab.de/ Printed on 2026/02/02 04:42

https://wiki.eolab.de/lib/exe/fetch.php?tok=2d031c&media=https%3A%2F%2Fwww.ti.com%2Flit%2Fds%2Fsymlink%2Fsn74hc595.pdf
https://wiki.eolab.de/doku.php?do=export_code&id=amc2020:group_n:sn74hc595n&codeblock=0

2026/02/02 04:42 5/12 SN74HC595(N) Shift Register
const int LATCHPIN //1
const int CLOCKPIN
const int DATAPIN
byte sensor numbers //2

BOOOOOOOO, //all off
BOOOOOOOL, //Pin 1
BOOOOOO1O, //Pin 2
BOOOOO1OO, //Pin 3
BOOOO1OGO, //Pin 4
BOOO1OOGOGO, //Pin 5
BOO10OOOO, //Pin 6
BO100OOGO, //Pin 7
B1000OOOGO, //Pin &8
void setup
pinMode (LATCHPIN ,OUTPUT //3

pinMode (CLOCKPIN ,OUTPUT
pinMode (DATAPIN ,OUTPUT

void loop
powerSwitch
delay
powerSwitch
delay
powerSwitch
delay
powerSwitch
delay

//4

//Power Supply Function

void powerSwitch(byte pin //5
digitalWrite(LATCHPIN, LOW //6
shiftOut (DATAPIN, CLOCKPIN, MSBFIRST, sensor numbers|pin //7
digitalWrite(LATCHPIN, HIGH //8

4.2. Explanation of the Code

1. The GPIO for latch, clock and data input were chosen as described before.

2. The array sensor_numbers is used to configure different configurations for which pins should be
high. the pattern of 0s and 1s in the binary numbers directly shows which pins are powered and
which are not. A 1 means that it is switched on, a 0 means it is switched off. The most
significant bit refers to pin QH/Q8 and the least significant bit refers to QA/Q1. Any combination
of pins to be powered can be chosen by adjusting the binary numbers in the array accordingly.

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update:

2021/08/24 17:34 amc2020:group_n:sn74hc595n https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

The elements in an array are zero indexed, so the first element has the index 0, the second has
index 1 and so on. Here the elements were chosen such that the index 0 put all outputs low and
the index 1 to 8 put only the corresponding pin high.

3. The shift register receives latch, data and clock as input, so the GPIOs need to be configured as
outputs.

4. Here the function powerSwitch(), defined at the bottom, is used to switch off all pins and then
switch on pin 1, then pin 2, then pin 3 in 1 second intervals and repeat.

5. The function powerSwitch() expects a byte type number as argument which represents the
parallel output pin to be switched on.

6. Putting the latch pin at a low voltage level results in the storage register not being actualized
while the new byte is shifted into the shift register; this prevents a disturbance of the output
pins.

7. The function shiftOut() is already included in the Arduino library and is used for shift registers.
As argument, it expects the data pin, the clock pin, the bit order and a value. The pins are given
in the int variables in (1). The bit order defines in in which order the bits are shifted out. It can
be either MSBFIRST, so the most significant bit is shifted out first, or LSBFIRST, so the least
significant bit is shifted out first. When MSBFIRST is chosen, the MSB is pin QH/Q8 and the LSB
is pin QA/Q8. Using LSBFIRST switches the order around. The value needs to below or equal to
255 because the function can only shift out data byte-wise. Here the element with the index
given in the powerSwitch() argument from the array sensor_number initialized in (2) is used as
value.

8. Giving a high signal on the latch pin transmits the fully shifted out byte to the storage register
which adjusts the three-state outputs accordingly causing the LEDs/sensors to be turned on.

4.3 Combining the Sketches

This code can be combined with the code from the DHT-22 and the DS18B20s such that the sensors
are only powered when they are supposed to measure and are switched off again afterwards.

The sensors and the shift register need to be connected like explained in their pages, respectively.
Additionally, the VDD pin of the DHT-22 must be connected to QB of the shift register and the VDD of
both DS18B20s must be connected to QC. Furthermore, if a red LED with a 330Q resistor in series is
connected to QA, it indicates when the sensors finish their measurements with a short blink (figure 3).

https://wiki.eolab.de/ Printed on 2026/02/02 04:42

2026/02/02 04:42 7/12 SN74HC595(N) Shift Register

DS18B20 D518B20

- =Sy - - - ® .
LA I!!!o!l#lﬁ-l!!gl Ll . LI Oﬂ! !fo!ol! L e W e e W - .
3300

. e sales welss s e sWafle o o9 sWalle sssee svsss wsw
% swmeRE sEEaw sow wasfle o wes swafle saees sewew waww

fritzing

Figure 3 ESP32 connected with DHT-22, DS18B20 and SN74HC595.

4.3.1 The Code combined

The individual sections of the code are explained in detail in the pages of the DHT-22 and the
DS18B20, respectively.

ESP32_Sensors_Combined.ino

//ESP32 + DHT-22 + DS18B20 + 74HC595(n) Test

//The code in this sketch is explained in detail in the DHT-22, the
DS18B20 and the SN74HC595N pages
//and just combines the different codes.

/ * —— == ——
* DHT-22

* —] —] —]

y o B

//Definitions and Pins

#define DHTTYPE DHT22 //define the DHT-xx sensor

const int DHTPIN = 15; //define the Data Pin (GPIO 2)

//Libraries & Objects
#include <DHT.h>

DHT dht(DHTPIN, DHTTYPE); //Represents sensor
//Variables
float dht22AirTem = 0O; //takes up new readings + final average

1 s

float dht22AirTemSum
averaging

0; //takes up the sum of readings for

HSRW EOLab Wiki - https://wiki.eolab.de/

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:esp32_all_sensors_breadboard.png
https://wiki.eolab.de/doku.php?id=amc2020:group_n:dht22
https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds18b20
https://wiki.eolab.de/doku.php?do=export_code&id=amc2020:group_n:sn74hc595n&codeblock=1

Last update:

2021/08/24 17:34 amc2020:group_n:sn74hc595n https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

String dht22Temperature = ""; //gives back Temperature as a String for
MQTT Transmission

float dht22RelHum = 0; //takes up new readings + final average
float dht22RelHumSum = 0; //takes up the sum of readings for
averaging

String dht22Humidity = ""; //9ives back Humidity as a String for

MQTT Transmission

const uint8 t AveragingNumberDHT22 = 5; //Number of measurements to be
averaged

/ * == == == == == ==

* DS18B20

* - — — — - —

w5/
//Definitions and Pins
const int ONE_WIRE BUS = 14; //=GPI0 14 of the ESP32 as 1-Wire Bus

//Libraries and Objects

#include <OneWire.h> //Library for the 1-Wire protocol
#include <DallasTemperature.h> //Library for sending commands and
receiving data

DeviceAddress bottomSensorAddress =
10x28,0xC4,0xA0,0x51,0x38,0x19,0x01,0xC2}; //Address bottom sensor
(sensor 1, Tape)

DeviceAddress surfaceSensorAddress =

{0x28,0x0B,0xDB, 0x60,0x38,0x19,0x01,0xA3}; //Address surface sensor
(sensor 2, w/o Tape)

OneWire oneWire(ONE WIRE BUS) ; //0bject representing the 1-
Wire bus

DallasTemperature DS18B20(&oneWire); //Object representing the sensors

//Variables
float bottomTem = 0.00; //for Temperature readings
String bottomTemperature = ""; //for the Sring to be sent using MQTT

float surfaceTem = 0.00;
String surfaceTemperature = "";

const uint8 t AveragingNumberDS18B20 = 5; //Number of measurements to
be averaged

int RESOLUTION = 12; //Resolution of the sensor

int TCONV = 750; //Conversion time for resolution = 12

int delayTime = (TCONV/pow(2, (12-RESOLUTION))) + 10; //Necessary delay
time after measuring to get new values, depending on resolution

https://wiki.eolab.de/ Printed on 2026/02/02 04:42

http://www.opengroup.org/onlinepubs/009695399/functions/pow.html

2026/02/02 04:42 9/12 SN74HC595(N) Shift Register

/ * == == == == == ==

* — — — — — —

*/
//Shift Register Pins

const int LATCHPIN 2¢
const int CLOCKPIN 4;
const int DATAPIN = 0;

//Shift Register Pin Array
byte sensor numbers/9] = {
BOOOOOOOO, //all off

BOOOOOOOL, //Pin 1

BOOOOOO1O, //Pin 2
BOOOOO1OO, //Pin 3
BOOOO10OO, //Pin 4
BOOO10OOO, //Pin 5
BOO10OOOO, //Pin 6
B01000OOO, //Pin 7
B10000OOO, //Pin 8
I
/ * —_—— —_—— —_—— —_—— —_—— —_——
* Setup
* —_—— —_—— —_—— —_—— —_—— —_——
y T)

void setup() {
pinMode (LATCHPIN ,OUTPUT) ;
pinMode (CLOCKPIN ,OUTPUT) ;
pinMode (DATAPIN ,OQUTPUT) ;

Serial.begin(115200);

delay(5000) ;

Serial.println("Measurement is starting ...");
Serial.println(" ");
Serial.println(delayTime) ;

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update:

2021/08/24 17:34 amc2020:group_n:sn74hc595n https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

void loop
Serial.println("Measuring ...
powerSwitch (2 //Turn DHT-22 ON
measureDHTTemHum (AveragingNumberDHT22
powerSwitch(1); //LED Blink
delay (200
powerSwitch(3); //Turn DS18B20s ON
measureDS18B20Tem(AveragingNumberDS18B20
powerSwitch(1); //LED Blink

delay (200
Serial.println("DHT-22 Measurement Results: "
Serial.println("Temperature: " dht22Temperature oec
Serial.println("Relative Humidity: " dht22Humidity "%
Serial.println("DS18B20 Measurement Results: "
Serial.println("Sensor 1 (Bottom) Measurement: " bottomTemperature
noocm
Serial.println("Sensor 2 (Surface) Measurement: "

surfaceTemperature "oec

Serial.println("

//DS18B20 Measurement function
void measureDS18B20Tem (const uint8 t AveragingNumber
DS18B20.begin
bottomTem 0
surfaceTem = 0
bottomTemperature o
surfaceTemperature o

byte i 0; 1 < AveragingNumber; i

DS18B20. requestTemperatures

delay(delayTime

bottomTem DS18B20.getTempC(bottomSensorAddress
surfaceTem DS18B20.getTempC(surfaceSensorAddress

bottomTem AveragingNumber
surfaceTem AveragingNumber

bottomTem<10
bottomTemperature "“o"
bottomTemperature bottomTem

https://wiki.eolab.de/ Printed on 2026/02/02 04:42

2026/02/02 04:42 11/12 SN74HC595(N) Shift Register

surfaceTem<10
surfaceTemperature "o
surfaceTemperature surfaceTem

//DHT22 Measurement function
void measureDHTTemHum (const uint8 t AveragingNumber

dht.begin //activate
Sensor
delay (1000 //to prevent

unstable status (see Datasheet)
dht22AirTemSum 0
dht22RelHumSum 0
dht22Temperature
dht22Humidity o
byte i = 0; i < AveragingNumber; i //take n
measurements for both

//execute this
at least once

dht22AirTem = dht.readTemperature //measure
Temperature
dht22RelHum = dht.readHumidity //measure
Humidity
isnan(dht22AirTem isnan(dht22RelHum //1if results

are valid, add them to the sum

dht22AirTemSum dht22AirTem
dht22RelHumSum dht22RelHum

delay (2000 //1f
measurement is invalid, it has to be repeated. Sensor must not heat up
isnan(dht22AirTem isnan(dht22RelHum //1if results
were invalid, repeat the loop
i AveragingNumber - 1 //after the
last measurement, there is no delay needed anymore
delay (2000
dht22AirTem = dht22AirTemSum / AveragingNumber //averaging the
measurements to get more accurate results
dht22AirTem=10 //1if the

Temperature is below 10°C, add a 0 to the front of the String
dht22Temperature ‘0"
dht22Temperature = dht22Temperature + dht22AirTem

dht22RelHum = dht22RelHumSum / AveragingNumber
dht22RelHum=10
dht22Humidity ‘0"

dht22Humidity = dht22Humidity + dht22RelHum

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update:
2021/08/24 17:34

amc2020:group_n:sn74hc595n https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

4.3.2 Results

//Shift Register Power Switch
void powerSwitch(byte pin
digitalWrite(LATCHPIN, LOW

shiftOut (DATAPIN, CLOCKPIN, MSBFIRST

digitalWrite(LATCHPIN, HIGH

The results of the sensor measurements are printed to the serial monitor:

18:
142
42
142
142
142
142
42
142
142
142
18:
142
142
142
142
142
142

18

18:

18
18
18
18

18:

18
18
18

18
18
18
18
18
18

42

42

:13.
13.
13.
27.
27.
27.
27.

27

297
297
330
159
159
159
159

.159
27.
27.
27.
144,
144,
144,
144,
144,
144,
144,

159
159
159
147
147
147
147
147
147
147

->
->

->
->

->
->
->

->

->

->

->
->

->

Measurement is starting ...

Measuring ...
DHT-22 Measurement Results:
Temperature: 27.72 °C

Relative Humidity: 46.22 %
DS18B20 Measurement Results:

Sensor 1 (Bottom) Measurement: 27.85 °C
Sensor 2 (Surface) Measurement: 27.42 °C
Measuring

DHT-22 Measurement Results:

Temperature: 27.80 °C

Relative Humidity: 45.06 %

DS18B20 Measurement Results:

Sensor 1 (Bottom) Measurement: 27.87 °C
Sensor 2 (Surface) Measurement: 27.54 °C

sensor_numbers|pin

During this test, all sensors were in equilibrium, measuring the room temperature during a rather hot
summer day, and all results are close together, indicating that the sensors are working properly.

Back to the top ⤴

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:

https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

Last update: 2021/08/24 17:34

https://wiki.eolab.de/

Printed on 2026/02/02 04:42

javascript:self.scrollTo(0,0)
https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=amc2020:group_n:sn74hc595n&rev=1596021152

	SN74HC595(N) Shift Register
	1. About the Module
	2. Working Principle
	3. Technical Specifications and Setup of the Module
	4. The Code
	4.1 Code for the Shift Register

	4.2. Explanation of the Code
	4.3 Combining the Sketches
	4.3.1 The Code combined
	4.3.2 Results

