2026/01/31 12:16 1/6 PID Controller

PID Controller

PID - a proportional-integral-derivative or three-term controller is a mechanism to control process
variable value, based on the feedback. Mainly used in systems and applications, which require to
continuously control unstable value. As an example from everyday life, | can talk about cruise control
systems in cars. The car brain, or main controller, compares the car's real speed with desired for hill
ascending and descending. Then the PID algorithms are applied to control the engine power, i.e.
increase or decrease it, to save vehicle resources. Also, we have applied PID algorithm in person
detection experiment with drone. There we measured the difference between the detected person's
bounding box center and image center and changed the yaw angle of the drone accordingly to
minimize this error.

Main principles

The main definitions of the PID are the following. First, we have a desired setpoint (SP) - this is the
value, that our process should maintain constantly. In drone experiment it was the difference between
the centers, and it should be ideally be equal to 0. Second we have a real value of process variable
(PV), that we get as an input to our PID algorithm. In drone experiment it was the real box centers'
difference. So having two values we calculate the error, the difference we want to eliminate.

$$ SP=r(t) $$

$$ PV=y(t) $$

$$ e(t)=r(t) - y(t) $$

This is where PID algorithm start to work. the formula of it can be written as

PD=P+1+D

P Component

P is a proportional to the error value control. The larger the error, the larger the P, and vice versa. To
adjust it koefficient Kp is used. But the main idea is that this control works only if there is an error.

P=Kp * e $$ P=K_{p} * e(t) $$

, where Kp is an adjustable coefficient.

| Component

[is an integral control. This component integrates or in other words, sums up all the past errors.
[=Ki*sum(e)

$$ 1=K _{i}*¥\int_ 0"t \mathrm{e}(\tau)\,\mathrm{d}\tau $$

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update: 2022/05/17

1455 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652792107

The main focus of | control is to eliminate residual error of system. When the error is close to 0, the
integral component will stop growing.

D Component

D or derivative control is related to the speed of value change.

D = Kd*de/dt

$$ D=K _{d}*\frac{\mathrm{d}e(t)} {\mathrm{d}t} $$

here $$ \mathrm{d}e =e(t)-e(t-1) $$ dt is time since last change.

This value will be bigger with the lower time of change dt, meaning the faster value changes, the
higher effect of D control would be felt. It is sometimes called “anticipatory control”, as it tries to
estimate the future trend of value change based on current rate.

The Arm Schematic and components

AAA Battery -
i Ausazeg wvv u&
AAA Battery i
i Aaameg vvv UJ

Arm to control

fritzing

https://wiki.eolab.de/ Printed on 2026/01/31 12:16

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:sketch_03.05_imu_external_power_marcell_bb.png

2026/01/31 12:16 3/6 PID Controller

R3
10kQ
. D1
""" “WeMos D1 Minit IN4732A
e B —_— ey
| —_— D P 050
' N WeMos D1 mini T j/f — A (GY'SZH
"“‘k,:,‘ ;. : < — r"/
Ql R1
10kQ
| £5%
fritzing
Components:
1. DC Motor
2. ESP8266 controller
3. MPU9250 sensor (placed on the arm)
4. Potentiometer B10K, 10 kOm resistance
5. Logic level mosfet
6. 2 Resistors, 100 Om and 10 kOm
7. Diod
8. Power Station (settings: 3.8 Volts, Max Amper)

Arduino code

HSRW EOLab Wiki - https://wiki.eolab.de/

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:sketch_03.05_imu_external_power_marcell_schem.png

Last update: 2022/05/17

1455 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652792107

20

s .- L
S S L B T S =

Total 75

importing libraries #include “MPU9250.h” sensor library #include “math.h” math
operations define pins #define MOTOR D3 pin for motor control #define PIN_POT AO pin for
potentiometer value reading MPU9250 mpu; sensor instance initial control values float
kp=6.8; float ki=0.1; float kd=1.8; float multiplier=1; multiplier variable is used to
maghnitude the P I D values at the same time by the same factor float error; float
ki_error_range=10; float desired_yaw=38.0; float pError=0.0; float current_yaw=0.0; float
PID p, PID i, PID d, PID total; time parameters for setting the frequency of reading sensor
values int period = 50; milliseconds float tme; serial input value String seriallnput; void
setup() { Serial.begin(115200); Wire.begin(); connection to MPU sensor if
(!mpu.setup(0x68)) { change to your own address while (1) { Serial.printin(“MPU
connection failed. Please check your connection with "connection_check’ example. Trying
to reconnect...”); delay(5000); if (mpu.setup(0x68)){ break; } } } motor and
potentiometer to output and input pinMode(MOTOR, OUTPUT); pinMode(PIN_POT, INPUT);
set desired yaw to the value, read from potentiometer set_desired_yaw();
Serial.printin(“Setup finished”); tme=millis(); } void set_desired_yaw(){ read
potentiometer value, range is [1024-10] int rot_1024= analogRead(PIN_POT); convert to
255 units system int rot_255 = 255%(1024 - rot_1024)/1014; set desired yaw if
(rot_255<141){ desired yaw=38+rot_255; } else { desired yaw=-179+(rot_255-141); } }
void loop() { set desired yaw in accordance to the last read from potentiometer
set_desired_yaw(); read input from serial monitor format: <variable>=<float value>
example: kp=1.5 if (Serial.available()> 0){ check if there is an input seriallnput =
Serial.readString(); read input as a string int index = seriallnput.indexOf('="); find index of
= String variable = seriallnput.substring(0,index); find the first part of substring, meaning
the variable name float value = seriallnput.substring(index+1,
seriallnput.length()).toFloat(); find the second part of substring, meaning the variable
value and convert it to float check variable name and assign the value to the
corresponding variable if (variable=="“kp”){ kp=value; } else if (variable=="ki"”){
ki=value; } else if (variable=="kd"”){ kd=value; } else if (variable=="kier”){

https://wiki.eolab.de/ Printed on 2026/01/31 12:16

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:arm_radian_scheme.png

2026/01/31 12:16 5/6 PID Controller

ki_error_range=value; } } check the sensor data if (mpu.update()) { if (millis() > tme +
period) { if more than period seconds passed since last read tme=millis(); set tme
variable to current time in milliseconds read current yaw angle
current_yaw=mpu.getYaw(); error calculation if current yaw and desired yaw have the
same signs if (current_yaw*desired yaw >=0){ error=desired_yaw-current_yaw; } else {
if(current_yaw> 0){ error= 179 -current_yaw + 179 - abs(desired_yaw); } else{ error=
-179 -current_yaw -(179 - abs(desired_yaw)); } } P calculation PID p = kp * multiplier*
error; | calculation I component starts to accumulate and hence to affect the PID total only
if it is in range of ki error range if(abs(error) < ki_error_range){ PID_i = PID_i + (ki
multiplier error); } else { else it is set to zero PID i=0; } D calculation pError is previous
value of error PID_d = kd*multiplier<”; Total PID calculation PID total = PID p + PID i +
PID_d; trim the PID value if it is outside of [0-255] range if (PID_total > 255){ PID_total
=255; } if (PID _total < 0){ PID _total =0; } print PID and other variables' values print_pid();
send final PID value to motor analogWrite(MOTOR,PID_total); set pError value to current
error value pError = error; } } } print variable values to Serial Monitor void print_pid() {
Serial.print(“Current Yaw: ”); Serial.printin(current yaw, 2); Serial.print(“Desired Yaw: ”);
Serial.printin(desired_yaw, 2); Serial.print(“Absolute error: ”); Serial.printin(abs(error),
2); Serial.print(“KP ki ki_error_range kd: ”); Serial.print(kp); Serial.print(“ ”);
Serial.print(ki); Serial.print(“ ”); Serial.print(ki_error_range); Serial.print(*“ ”);
Serial.printin(kd); Serial.print(“PID Total, P, I, D: ”); Serial.print(PID_total, 2);
Serial.print(“, ”); Serial.print(PID p, 2); Serial.print(*“, ”’); Serial.print(PID i, 2);
Serial.print(“, ”); Serial.printin(PID d, 2); } not used sending values to PC may be useful in
future void sendToPC(int* data) { byte* byteData = (byte*)(data); Serial.write(byteData,
2); } void sendToPC(float* data) { byte* byteData = (byte*)(data); Serial.write(byteData,
4); }

PID Tuning

Put together, the final formula of PID controller is:
PID = Kp * e + Ki*sum(e) + Kd*de/dt

$$ PID =K _{p} * e(t)+ K {i}®int 0"t \mathrm{e}(\tau)\,\\mathrm{d}\tau +
K_{d}*\frac{\mathrm{d}e(t)}{\mathrm{d}t} $$

From this formula you can see, that the only changable parts are K values. This tuning part is most
important and most challenging, because generally PID doesn't guarantee optimal solution. There can
always be lags in the response to the control, or the proportional relationship between SP and PV, for
example, in drone example, between distance and yaw angle, can be incorrect. That is why the K
coeffiecients should be manually tuned during experiments. One may find out, that some K values
should be set to 0, this means this component is not applied at all. For example, if you set Ki value to
0, it means |

[=Ki*sum(e) will always be zero.
The commonly accepted way of tuning is following:

First you start changing Kp coefficient, and Ki Kd are set to 0. P value is proportional to error, and this
leads to the oscilation of the system. To decrease the oscilations we can decrease Kp. If we want to
react faster to changes, we need to take into account also the speed of changes, or Derivative

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update: 2022/05/17

1455 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652792107

controller D. Remember its formula

Resources

https://en.wikipedia.org/wiki/PID_controller

1)

error - pError)/(period

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:
https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652792107

Last update: 2022/05/17 14:55

https://wiki.eolab.de/ Printed on 2026/01/31 12:16

https://en.wikipedia.org/wiki/PID_controller
https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652792107

	PID Controller
	Main principles
	P Component
	I Component
	D Component
	The Arm Schematic and components
	Arduino code
	PID Tuning
	Resources

