
2026/01/31 12:17 1/9 PID Controller

HSRW EOLab Wiki - https://wiki.eolab.de/

PID Controller

PID - a proportional-integral-derivative or three-term controller is a mechanism to control process
variable value, based on the feedback. Mainly used in systems and applications, which require to
continuously control unstable value. As an example from everyday life, I can talk about cruise control
systems in cars. The car brain, or main controller, compares the car's real speed with desired for hill
ascending and descending. Then the PID algorithms are applied to control the engine power, i.e.
increase or decrease it, to save vehicle resources. Also, we have applied PID algorithm in person
detection experiment with drone. There we measured the difference between the detected person's
bounding box center and image center and changed the yaw angle of the drone accordingly to
minimize this error.

Main principles

The main definitions of the PID are the following. First, we have a desired setpoint (SP) - this is the
value, that our process should maintain constantly. In drone experiment it was the difference between
the centers, and it should be ideally be equal to 0. Second we have a real value of process variable
(PV), that we get as an input to our PID algorithm. In drone experiment it was the real box centers'
difference. So having two values we calculate the error, the difference we want to eliminate.

$$ SP= r(t) $$

$$ PV= y(t) $$

$$ e(t)= r(t) - y(t) $$

This is where PID algorithm start to work. the formula of it can be written as

PID = P + I + D

P Component

P is a proportional to the error value control. The larger the error, the larger the P, and vice versa. To
adjust it koefficient Kp is used. But the main idea is that this control works only if there is an error.

P=Kp * e $$ P=K_{p} * e(t) $$

, where Kp is an adjustable coefficient.

I Component

I is an integral control. This component integrates or in other words, sums up all the past errors.

I=Ki*sum(e)

$$ I=K_{i}*\int_0^t \mathrm{e}(\tau)\,\mathrm{d}\tau $$

Last update: 2022/05/17
16:43 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652798602

https://wiki.eolab.de/ Printed on 2026/01/31 12:17

The main focus of I control is to eliminate residual error of system. When the error is close to 0, the
integral component will stop growing.

D Component

D or derivative control is related to the speed of value change.

D = Kd*de/dt

$$ D=K_{d}*\frac{\mathrm{d}e(t)}{\mathrm{d}t} $$

here $$ \mathrm{d}e =e(t)-e(t-1) $$ dt is time since last change.

This value will be bigger with the lower time of change dt, meaning the faster value changes, the
higher effect of D control would be felt. It is sometimes called “anticipatory control”, as it tries to
estimate the future trend of value change based on current rate.

The Arm Schematic and components

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:sketch_03.05_imu_external_power_marcell_bb.png

2026/01/31 12:17 3/9 PID Controller

HSRW EOLab Wiki - https://wiki.eolab.de/

Components:

DC Motor1.
ESP8266 controller2.
MPU9250 sensor (placed on the arm)3.
Potentiometer B10K, 10 kOm resistance4.
Logic level mosfet5.
2 Resistors, 100 Om and 10 kOm6.
Diod7.
Power Station (settings: 3.8 Volts, Max Amper)8.

Arduino code

Built tool's limitations

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:sketch_03.05_imu_external_power_marcell_schem.png

Last update: 2022/05/17
16:43 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652798602

https://wiki.eolab.de/ Printed on 2026/01/31 12:17

arduino_code.ino

// importing libraries
#include "MPU9250.h" // sensor library
#include "math.h" // math operations

//define pins
#define MOTOR D3 // pin for motor control
#define PIN_POT A0 //pin for potentiometer value reading

MPU9250 mpu; // sensor instance

// initial control values
float kp=6.8;
float ki=0.1;
float kd=1.8;
float multiplier=1; // multiplier variable is used to magnitude the P I
D values at the same time by the same factor
float error;
float ki_error_range=10;
float desired_yaw=38.0;
float pError=0.0;
float current_yaw=0.0;
float PID_p, PID_i, PID_d, PID_total;
// time parameters for setting the frequency of reading sensor values
int period = 50; // milliseconds
float tme;

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:arm_radian_scheme.png
https://wiki.eolab.de/doku.php?do=export_code&id=drone-technolgy:pid-controller&codeblock=0

2026/01/31 12:17 5/9 PID Controller

HSRW EOLab Wiki - https://wiki.eolab.de/

// serial input value
String serialInput;

void setup() {
 Serial.begin(115200);
 Wire.begin();
 // connection to MPU sensor
 if (!mpu.setup(0x68)) { // change to your own address
 while (1) {
 Serial.println("MPU connection failed. Please check your
connection with `connection_check` example. Trying to reconnect...");
// delay(5000);
 if (mpu.setup(0x68)){
 break;
 }
 }

 }

 // motor and potentiometer to output and input
 pinMode(MOTOR, OUTPUT);
 pinMode(PIN_POT, INPUT);
 // set desired yaw to the value, read from potentiometer
 set_desired_yaw();
 Serial.println("Setup finished");
 tme=millis();
}

void set_desired_yaw(){
 // read potentiometer value, range is [1024-10]
 int rot_1024= analogRead(PIN_POT);
 // convert to 255 units system
 int rot_255 = 255*(1024 - rot_1024)/1014;
 // set desired yaw
 if (rot_255<=141){
 desired_yaw=38+rot_255;
 }
 else {
 desired_yaw=-179+(rot_255-141);
 }
 }

void loop() {
 // set desired yaw in accordance to the last read from potentiometer
 set_desired_yaw();

 // read input from serial monitor

Last update: 2022/05/17
16:43 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652798602

https://wiki.eolab.de/ Printed on 2026/01/31 12:17

 // format: <variable>=<float value>
 // example: kp=1.5
 if (Serial.available()> 0){ // check if there is an input

 serialInput = Serial.readString(); //read input as a string
 int index = serialInput.indexOf('='); // find index of =
 String variable = serialInput.substring(0,index); // find the
first part of substring, meaning the variable name
 float value = serialInput.substring(index+1,
serialInput.length()).toFloat(); // find the second part of substring,
meaning the variable value and convert it to float
 // check variable name and assign the value to the corresponding
variable
 if (variable=="kp"){
 kp=value;
 }
 else if (variable=="ki"){
 ki=value;
 }

 else if (variable=="kd"){
 kd=value;
 }
 else if (variable=="kier"){
 ki_error_range=value;
 }
 }

 // check the sensor data
 if (mpu.update()) {
 if (millis() > tme + period) { // if more than period seconds
passed since last read

 tme=millis(); // set tme variable to current time in
milliseconds

 // read current yaw angle
 current_yaw=mpu.getYaw();
 // error calculation

 // if current yaw and desired yaw have the same signs
 if (current_yaw*desired_yaw >=0){
 error=desired_yaw-current_yaw;
 } else {

 if(current_yaw> 0){
 error= 179 -current_yaw + 179 - abs(desired_yaw);
 } else{
 error= -179 -current_yaw -(179 -
abs(desired_yaw));

2026/01/31 12:17 7/9 PID Controller

HSRW EOLab Wiki - https://wiki.eolab.de/

 }

 }

 // P calculation
 PID_p = kp * multiplier* error;

 // I calculation
 // I component starts to accumulate and hence to affect the
PID total only if it
 // is in range of ki error range
 if(abs(error) < ki_error_range){
 PID_i = PID_i + (ki *multiplier* error);

 } else { // else it is set to zero
 PID_i=0;
 }

 // D calculation
 // pError is previous value of error
 PID_d = kd*multiplier*((error - pError)/(period));

 // Total PID calculation
 PID_total = PID_p + PID_i + PID_d;

 // trim the PID value if it is outside of [0-255] range

 if (PID_total > 255){
 PID_total =255;
 }

 if (PID_total < 0){
 PID_total =0;
 }

 // print PID and other variables' values
 print_pid();

 // send final PID value to motor
 analogWrite(MOTOR,PID_total);

 // set pError value to current error value
 pError = error;
 }
}
}

// print variable values to Serial Monitor
void print_pid() {
 Serial.print("Current Yaw: ");
 Serial.println(current_yaw, 2);

Last update: 2022/05/17
16:43 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652798602

https://wiki.eolab.de/ Printed on 2026/01/31 12:17

 Serial.print("Desired Yaw: ");
 Serial.println(desired_yaw, 2);
 Serial.print("Absolute error: ");
 Serial.println(abs(error), 2);
 Serial.print("KP ki ki_error_range kd: ");
 Serial.print(kp);
 Serial.print(" ");
 Serial.print(ki);
 Serial.print(" ");
 Serial.print(ki_error_range);
 Serial.print(" ");
 Serial.println(kd);

 Serial.print("PID_Total, P, I, D: ");
 Serial.print(PID_total, 2);
 Serial.print(", ");
 Serial.print(PID_p, 2);
 Serial.print(", ");
 Serial.print(PID_i, 2);
 Serial.print(", ");
 Serial.println(PID_d, 2);
}

// not used
// sending values to PC
// may be useful in future
void sendToPC(int* data)
{
 byte* byteData = (byte*)(data);
 Serial.write(byteData, 2);
}

void sendToPC(float* data)
{
 byte* byteData = (byte*)(data);
 Serial.write(byteData, 4);
}

Link to the code in GitHub repository
https://github.com/eligosoftware/pid_arm_control/blob/main/sketch_apr29a_new_idea.ino

PID Tuning

Put together, the final formula of PID controller is:

PID = Kp * e + Ki*sum(e) + Kd*de/dt

https://github.com/eligosoftware/pid_arm_control/blob/main/sketch_apr29a_new_idea.ino

2026/01/31 12:17 9/9 PID Controller

HSRW EOLab Wiki - https://wiki.eolab.de/

$$ PID =K_{p} * e(t)+ K_{i}*\int_0^t \mathrm{e}(\tau)\,\mathrm{d}\tau +
K_{d}*\frac{\mathrm{d}e(t)}{\mathrm{d}t} $$

From this formula you can see, that the only changable parts are K values. This tuning part is most
important and most challenging, because generally PID doesn't guarantee optimal solution. There can
always be lags in the response to the control, or the proportional relationship between SP and PV, for
example, in drone example, between distance and yaw angle, can be incorrect. That is why the K
coeffiecients should be manually tuned during experiments. One may find out, that some K values
should be set to 0, this means this component is not applied at all. For example, if you set Ki value to
0, it means I

I=Ki*sum(e) will always be zero.

The commonly accepted way of tuning is following:

First you start changing Kp coefficient, and Ki Kd are set to 0. P value is proportional to error, and this
leads to the oscilation of the system. To decrease the oscilations we can decrease Kp. If we want to
react faster to changes, we need to take into account also the speed of changes, or Derivative
controller D. Remember its formula

Resources

https://en.wikipedia.org/wiki/PID_controller
https://github.com/eligosoftware/pid_arm_control
https://www.youtube.com/watch?v=IB1Ir4oCP5k&ab_channel=RealPars

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:
https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652798602

Last update: 2022/05/17 16:43

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:serialmonitor_input.png
https://en.wikipedia.org/wiki/PID_controller
https://github.com/eligosoftware/pid_arm_control
https://www.youtube.com/watch?v=IB1Ir4oCP5k&ab_channel=RealPars
https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652798602

	PID Controller
	Main principles
	P Component
	I Component
	D Component
	The Arm Schematic and components
	Arduino code
	PID Tuning
	Resources

