2026/01/31 12:15 1/10 PID Controller

PID Controller

PID - a proportional-integral-derivative or three-term controller is a mechanism to control process
variable value, based on the feedback. Mainly used in systems and applications, which require to
continuously control unstable value. As an example from everyday life, | can talk about cruise control
systems in cars. The car brain, or main controller, compares the car's real speed with desired for hill
ascending and descending. Then the PID algorithms are applied to control the engine power, i.e.
increase or decrease it, to save vehicle resources. Also, we have applied PID algorithm in person
detection experiment with drone. There we measured the difference between the detected person's
bounding box center and image center and changed the yaw angle of the drone accordingly to
minimize this error.

Main principles

The main definitions of the PID are the following. First, we have a desired setpoint (SP) - this is the
value, that our process should maintain constantly. In drone experiment it was the difference between
the centers, and it should be ideally be equal to 0. Second we have a real value of process variable
(PV), that we get as an input to our PID algorithm. In drone experiment it was the real box centers'
difference. So having two values we calculate the error, the difference we want to eliminate.

$$ SP=r(t) $$

$$ PV=y(t) $$

$$ e(t)=r(t) - y(t) $$

This is where PID algorithm start to work. the formula of it can be written as

PD=P+1+D

P Component

P is a proportional to the error value control. The larger the error, the larger the P, and vice versa. To
adjust it koefficient Kp is used. But the main idea is that this control works only if there is an error.

P=Kp * e $$ P=K_{p} * e(t) $$

, where Kp is an adjustable coefficient.

| Component

[is an integral control. This component integrates or in other words, sums up all the past errors.
[=Ki*sum(e)

$$ 1=K _{i}*¥\int_ 0"t \mathrm{e}(\tau)\,\mathrm{d}\tau $$

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update: 2022/05/17

17:55 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652802945

The main focus of | control is to eliminate residual error of system. When the error is close to 0, the
integral component will stop growing.

D Component

D or derivative control is related to the speed of value change.

D = Kd*de/dt

$$ D=K _{d}*\frac{\mathrm{d}e(t)} {\mathrm{d}t} $$

here $$ \mathrm{d}e =e(t)-e(t-1) $$ dt is time since last change.

This value will be bigger with the lower time of change dt, meaning the faster value changes, the
higher effect of D control would be felt. It is sometimes called “anticipatory control”, as it tries to
estimate the future trend of value change based on current rate.

The Arm Schematic and components

AAA Battery -
i Ausazeg wvv u&
AAA Battery i
i Aaameg vvv UJ

Arm to control

fritzing

https://wiki.eolab.de/ Printed on 2026/01/31 12:15

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:sketch_03.05_imu_external_power_marcell_bb.png

2026/01/31 12:15 3/10 PID Controller

R3
10kQ
. D1
""" “WeMos D1 Minil\\::-: IN4732A
el I] — _ L MU
| — — y ———5DA 6050
' S WeMos D1 mini — "f/“ . (GY_SZU
““*-;.‘ ;. SR ’ ::f e %"‘7
Ql R1
| 10kQ
+5%
fritzing
Components:
1. DC Motor
2. ESP8266 controller
3. MPU9250 sensor (placed on the arm)
4. Potentiometer B10K, 10 kOm resistance
5. Logic level mosfet
6. 2 Resistors, 100 Om and 10 kOm
7. Diod
8. Power Station (settings: 3.8 Volts, Max Amper)

Arduino code

Built tool's limitations

HSRW EOLab Wiki - https://wiki.eolab.de/

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:sketch_03.05_imu_external_power_marcell_schem.png

Last update: 2022/05/17

17:55 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652802945

20

Total 75

arduino_code.ino

// importing libraries
#include "MPU9250.h" // sensor library
#include "math.h" // math operations

//define pins
#define MOTOR D3 // pin for motor control
#define PIN POT A0 //pin for potentiometer value reading

MPU9250 mpu; // sensor instance

// initial control values

float kp=6.8

float ki=0.1

float kd=1.8

float multiplier=1; // multiplier variable is used to magnitude the P I
D values at the same time by the same factor

float error

float ki _error_range=10

float desired yaw-=38.0

float pError=0.0

float current yaw=0.0

float PID p, PID i, PID d, PID total

// time parameters for setting the frequency of reading sensor values
int period = 50; // milliseconds

float tme

https://wiki.eolab.de/ Printed on 2026/01/31 12:15

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:arm_radian_scheme.png
https://wiki.eolab.de/doku.php?do=export_code&id=drone-technolgy:pid-controller&codeblock=0

2026/01/31 12:15 5/10 PID Controller

// serial input value
String serialInput

void setup
Serial.begin (115200

Wire.begin

// connection to MPU sensor

if mpu.setup (0x68 // change to your own address
while (1

Serial.println("MPU connection failed. Please check your
connection with “connection check™ example. Trying to reconnect..."
// delay(5000);

17 (mpu.setup(Ox68
break

// motor and potentiometer to output and input

pinMode (MOTOR, OUTPUT

pinMode (PIN POT, INPUT

// set desired yaw to the value, read from potentiometer
set desired yaw

Serial.println("Setup finished"

tme=millis

void set desired yaw
// read potentiometer value, range 1is [1024-10]
int rot 1024- analogRead(PIN POT
// convert to 255 units system
int rot_255 = 255*(1024 rot 1024)/1014
// set desired yaw
if (rot 255<=141
desired yaw=38+rot 255

else
desired yaw=-179+(rot 255-141

void loop
// set desired yaw in accordance to the last read from potentiometer
set desired yaw

// read input from serial monitor

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update: 2022/05/17

17:55 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652802945

// format: <variable>=<float value>
// example: kp=1.5

if (Serial.available 0){ // check if there is an input
serialInput = Serial.readString //read input as a string
int index = seriallInput.indexOf('=" // find index of =

String variable = seriallnput.substring(0,index); // find the
first part of substring, meaning the variable name
float value = seriallnput.substring(index+1
seriallnput.length .toFloat // find the second part of substring,
meaning the variable value and convert it to float
// check variable name and assign the value to the corresponding
variable
it (variable=="kp"
kp=value

else 1T (variable=="ki"
ki=value

else if (variable=="kd"
kd=value

else if (variable=="kier"
ki error_range-=value

// check the sensor data
if (mpu.update
17 (millis tme + period // 1f more than period seconds
passed since last read

tme=millis // set tme variable to current time in
milliseconds

// read current yaw angle
current yaw-mpu.getYaw
// error calculation

// 1f current yaw and desired yaw have the same signs
1t (current yaw'desired yaw ==0
error=desired yaw-current yaw

else

iflcurrent yaw= 0
error= 179 -current _yaw + 179 - abs(desired yaw
else
error 179 current yaw 179
abs(desired yaw

https://wiki.eolab.de/ Printed on 2026/01/31 12:15

http://www.opengroup.org/onlinepubs/009695399/functions/abs.html
http://www.opengroup.org/onlinepubs/009695399/functions/abs.html

2026/01/31 12:15 7/10 PID Controller

// P calculation
PID p kp * multiplier® error

// I calculation

// I component starts to accumulate and hence to affect the
PID total only if it

// 1s in range of ki error range

if(abs(error ki error _range

PID i = PID i ki “multiplier* error

else // else it is set to zero
PID i=0

// D calculation
// pError is previous value of error
PID d kd*multiplier*((error - pError)/(period

// Total PID calculation
PID total = PID p + PID i + PID d

// trim the PID value if it is outside of [0-255] range

it (PID total = 255
PID total =255

it (PID total < 0
PID total =0

// print PID and other variables' values
print pid

// send final PID value to motor
analogWrite(MOTOR,PID total

// set pError value to current error value
pError error

// print variable values to Serial Monitor
void print pid
Serial.print("Current Yaw: "
Serial.println(current yaw, 2

HSRW EOLab Wiki - https://wiki.eolab.de/

http://www.opengroup.org/onlinepubs/009695399/functions/abs.html

Last update: 2022/05/17

17:55 drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652802945

Serial.print("Desired Yaw: "
Serial.println(desired yaw
Serial.print("Absolute error:
Serial.println(abs(error
Serial.print("KP ki ki error_range kd: "
Serial.print(kp

Serial.print(" "

Serial.print(ki

Serial.print
Serial.print(ki_error_range
Serial.print(" "
Serial.println(kd

Serial.print("PID Total, P, I, D: "
Serial.print(PID total
Serial.print(", "
Serial.print(PID p

Serial.print(", "
Serial.print(PID i

Serial.print(", "
Serial.println(PID d

// not used

// sending values to PC

// may be useful in future
void sendToPC(int* data

byte* byteData byte*) (data
Serial.write(byteData
void sendToPC(float* data

byte* byteData byte*) (data
Serial.write(byteData

Link to the code in GitHub repository
https://github.com/eligosoftware/pid_arm_control/blob/main/sketch_apr29a new _idea.ino

PID Tuning

Put together, the final formula of PID controller is:

PID = Kp * e + Ki*sum(e) + Kd*de/dt

https://wiki.eolab.de/ Printed on 2026/01/31 12:15

http://www.opengroup.org/onlinepubs/009695399/functions/abs.html
https://github.com/eligosoftware/pid_arm_control/blob/main/sketch_apr29a_new_idea.ino

2026/01/31 12:15 9/10 PID Controller

$$ PID =K _{p} * e(t)+ K _{i}¥int 0"t \mathrm{e}(\tau)\,\\mathrm{d}\tau +
K_{d}*\frac{\mathrm{d}e(t)}{\mathrm{d}t} $$

From this formula you can see, that the only changable parts are K values. This tuning part is most
important and most challenging, because generally PID doesn't guarantee optimal solution. There can
always be lags in the response to the control, or the proportional relationship between SP and PV, for
example, in drone example, between distance and yaw angle, can be incorrect. That is why the K
coeffiecients should be manually tuned during experiments. One may find out, that some K values
should be set to 0, this means this component is not applied at all. For example, if you set Ki value to
0, it means |

[=Ki*sum(e) will always be zero.
The commonly accepted way of tuning is following:

First you start changing Kp coefficient, and Ki Kd are set to 0. P value is proportional to error, and this
leads to the oscilation of the system. To decrease the oscilations we can decrease Kp. If we want to
react faster to changes, we need to take into account also the speed of changes, or Derivative
controller D. Remember its formula:

D = Kd*de/dt
$$ D=K _{d}*\frac{\mathrm{d}e(t)}{\mathrm{d}t} $$

Here, the smaller the period between measurements or the bigger the change in error, the bigger will
be the final D component.

And finally, you can tune the | component. It affects the final PID value only when error is within the
given range relative to desired yaw value. For example, if the error is too small for proportional P
controller and the error didn't change since the last measurement, the PID will be zero without |
controller.

To change kp, ki and kd in our experiment without changing the code, you can enter:

e “kp=4" for P coefficient value

e “ki=2" for | coefficient value

e “kd=1" for D coefficient value

e “kier=20" for | controller range value

Here the values should be adapted for your device.

HSRW EOLab Wiki - https://wiki.eolab.de/

Last update: 2022/05/17
17:55

drone-technolgy:pid-controller https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652802945

@ coms - O X
= Send

kp=4| en

Current Yaw: 27.37

Desired Yaw: -€&.00

Absolute error: 264.03

Current Yaw: 28_0&
Desired Yaw: —-€€.00
Absolute error: 2€3.54

Current Yaw: 22.02
Desired Yaw: -€7.00

Absolute error: 26292

EP ki ki_error_range kd:
PID Total, P, I, D: 255.

EP ki ki error range kd:
PID Total, B, I, D: 255.

EP ki ki error_range kd:
PID Total, P, I, D: 255.

€.80 0.10 10_.00 1.80

00, 1785.33, 0.00, -0.00

€.80 0.10 10.00 1.80

00, 1794.32, 0.00, -0.00

€.80 0.10 10_.00 1.80

00, 1787.8€, 0.00, -0.04

B Autoscroll (] Show timestamp

115200 baud -~ Clear output

For more examples of PID controller see nice videos on Youtube in Resources section.

Resources

From:

PID controller on Wikipedia https://en.wikipedia.org/wiki/PID_controller

PID controller code https://github.com/eligosoftware/pid_arm_control

PID Tuning https://www.youtube.com/watch?v=IB1Ir4oCP5k&ab_channel=RealPars

PID Tuning https://www.youtube.com/watch?v=JFT)25S4xyA&t=612s&ab_channel=Electronoobs

https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:

https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652802945

Last update: 2022/05/17 17:55

https://wiki.eolab.de/

Printed on 2026/01/31 12:15

https://wiki.eolab.de/lib/exe/detail.php?id=drone-technolgy%3Apid-controller&media=drone-technolgy:serialmonitor_input.png
https://en.wikipedia.org/wiki/PID_controller
https://github.com/eligosoftware/pid_arm_control
https://www.youtube.com/watch?v=IB1Ir4oCP5k&ab_channel=RealPars
https://www.youtube.com/watch?v=JFTJ2SS4xyA&t=612s&ab_channel=Electronoobs
https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=drone-technolgy:pid-controller&rev=1652802945

	PID Controller
	Main principles
	P Component
	I Component
	D Component
	The Arm Schematic and components
	Arduino code
	PID Tuning
	Resources

