2026/02/01 23:23 1/3 Docker

Docker

Bei Docker handelt es sich um ein open-source (Apache 2.0 Lizenz) System um sogenannte Container
zu betreiben und zu verwalten. Dies dient im besonderen dazu Code effizient in kurzer Zeit auf
diversen Systemen lauffahig zu machen. (Turnbull, 2019, S.7-8) So hilft Docker eine Applikation von
der Infrastruktur zu separieren und so zu isolieren (Docker Inc., 0.J.a).

Funktionsweise und Unterschied zu virtuellen Maschinen

Das Docker-System besteht aus drei essentiellen Teilen:

e Docker Images
e Docker Container
e Docker Engine

Die Docker Images sind die Bauanleitung fur die Docker Container. Die Images enthalten dabei eine
Schritt fur Schritt-Anleitung, wie ein Container generiert beziehungsweise aufgebaut werden muss. Als
Beispiel nennt Turnbull:

1. Fuge eine Datei hinzu.
2. FUhre einen Befehl aus.
3. Offne einen Port.

Wie zusehen ist, sind diese Images sehr trivial aufgebaut. Das macht es besonders einfach sie zu
teilen und zu modifizieren. (Turnbull, 2019, S.12) Ein weiterer Vorteil der Images ist es, dass sie
aufeinander basieren kdnnen. So ist es beispielsweise maglich ein eigenes Image zu erstellen welches
auf dem Image von Ubuntu basiert. So ein Image wird dann in einer Dockerfile erstellt. Jeder weitere
hinzugefugte Befehl wird als eine neue Ebene gesehen. Ein Vorteil welcher Docker von anderen
Container-Systemen unterscheidet ist, dass Docker ein Image nicht komplett neu baut, wenn in der
Dockerfile sich eine Ebene verandert. Es werden lediglich die veranderten Ebenen erneuert. Das
macht, laut Docker Inc., die Images so klein und schnell. Die meisten der allgemein bekannten Docker
Images werden in Registries verdffentlicht, wo sie fir jeden zur Verflgung stehen. Eine der
bekanntesten Registries ist Docker Hub. (Docker Inc., 0.).a) Die Docker Container werden zur Laufzeit
von der Docker Engine mit Hilfe der Docker Images generiert. Da Docker Container standardisiert
sind, sind sie mit anderen Container Umgebungen kompatibel. (Docker Inc., 0.).b) Auch das macht sie
sehr portable. Dies wird auch dadurch gefdrdert, dass die Container selber kein eigenes
Betriebssystem und Kernel umfassen, da dies mit dem Host-System geteilt wird. Dies ist auch
gleichzeitg einer der groBen Unterschiede zu virtuellen Maschinen. Ein Container beinhaltet lediglich
die Anwendung und deren Abhangigkeiten. So ist es auch moglich mehrere Container auf einem Host
zu betreiben, wobei diese stets von einander isoliert sind. Virtuelle Maschinen hingegen sind zwar
auch von einander isoliert, aber sie eignen sich besser dazu, physikalisch Hardware zu emulieren.
Dafur enthalt jede virtuelle Maschine ein eigenes Betriebssystem inklusive Kernel. Das macht sie
deutlich ressourcenintensiver in der Bereitstellung, was sich auch auf die Perfomance negativ
auswirkt. (Rad, Bhatti & Ahmadi, 2017) Auch wenn die Container isoliert vom Host-Betriebssystem
arbeiten, bietet Docker die Moglichkeit, gewisse Teile des Containers zu 6ffnen und so eine einfachere
Kommunikation zwischen Container und Host-Betriebssystem zu ermdglichen. Beispielsweise kdnnen
Ports fur einen Container freigegeben werden. Dies ist maglich, da jeder Container eine eigene
Netzwerkschnittstelle besitzt. Die Docker Engine (spater mehr dazu) kann diesen Port dann fur das

HSRW EOLab Wiki - https://wiki.eolab.de/



Last update: 2021/08/24 17:34 user:jan001:ba:docker https://wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612889112

Host-Betriebssystem auf einen anderen Port umleiten. Dies ermdglicht zum Beispiel zehn Container
mit einer Anwendung die Port 80 verwendet zu betreiben und fur das Host-Betriebssystem sind es
dann die Ports 42001, 42002 und so weiter. Jeder Container hat dann nach auBen hin einen eigenen
Port. In ihrem Container benutzt die Anwendung aber immer den selben Port. (Anderson, 2015,
S.104f) Auch koénnen fur Docker Container sogenannte Volumes eingerichtet werden. Dies ist ein
persistener Speicher fur Daten, welcher nicht zwingend an einen Container gebunden sein muss. Auf
diesen Speicher kdnnen sowohl mehrere Container als auch das Host-Betriebssystem direkt zu
greifen. Dies wird haufig beispielsweise genutzt um Quellcode in den Container zu bekommen ohne
das Image zu verandern oder um Ereignisprotokolle auch auBerhalb des Containers verflgbar zu
machen. Auch diese Funktion wird durch die Docker Engine ermaoglicht. (Turnbull, 2019, S.113) Die
Docker Engine, auch bekannt als Docker Daemon, und stellt im Docker System quasi den Verwalter
dar. Die Engine wird Uber eine RestAPI gesteuert. So kdnnen Images, Container, Netzwerke und
Volumen verwaltet werden. Sie steuert auch die Kommunikation zwischen den laufenden Docker
Container und dem Host-Betriebssystem. Dazu zahlen beispielsweise die Verteilung von
Systemressourcen und der Zugriff auf Basisfunktionalitat des Host-Betriebssystems. (Docker Inc.,
0.).a)

Oftmals besteht eine Applikation nicht nur aus einer Anwendung. So koénnen Webapplikationen
beispielsweise einen Backend-Webserver und dazu noch eine oder mehrere Datenbanken enthalten.
Dafur kénnen natlrlich mehrere Container einzeln Uber die Kommandozeile mit Hilfe der Docker
Engine angelegt und verwaltet werden. Dies ist aber sehr aufwandig und auch schlecht replizierbar.
Genau fur solche Einsatzzwecke wurde das Tool Docker-Compose entwickelt. Docker-Compose
ermdoglicht es in einer Datei alle Services (eine Konfiguration eines Containers), Volumen, Netzwerke
und Abhangigkeiten zu definieren. Diese Datei kann dann einfach und schnell geteilt werden, um eine
Applikation in einer Entwicklungs-, aber auch in einer Produktionsumgebung lauffahig zu machen.
Dabei kénnen beispielsweise Portumleitungen oder Umgebungsvariablen schnell gedandert werden,
um die Applikation ihrer Umgebung anzupassen. (Smith, 2017)

Einsatzgebiete

Docker wird sowohl in der Entwicklung, als auch in der Produktion eingesetzt. Besonders von Vorteil
ist, dass die Container eine standardisierte Umgebung, in welcher die Applikation betrieben wird,
schaffen. Diese Umgebung ist dann gleich in der Entwicklung, beim Testen und in der Produktion. Dies
verhindert das auftreten von Fehlern, welche mit der Umgebung zusammenhangen. Auch ist es flr
Entwickler einfacher Aktualisierungen an einen Kunden zu Ubertragen, da nicht eine ganze Applikation
aktualisiert werden muss, sondern nur ein Teil dieser. Dieser Ablauf wird Continuous Integration und
Continuous Deployment genannt. (Docker Inc., 0.).a) Dies spart vor allem Zeit. Eine alternative
Methode ware es dies Uber virtuelle Maschinen aufzusetzen. Dabei wlrde jedoch alleine die Zeit,
welche es bendtigt eine solche virtuelle Maschine einzurichten, bei Gber 10 Minuten liegen. Auch
musste dies flr jede Umgebung einzeln getan werden. Sollte eine virtuelle Maschine fehlerhaft sein
muss diese naturlich auch wieder neu eingerichtet werden, was vor allem in einer
Entwicklungsumgebung und der Testumgebung haufig vorkommt. Das andere Einsatzgebiet sind
Umgebungen, in denen besonders viele Applikationen oder Instanzen einer Applikation betrieben
werden. Wirde dies Uber virtuelle Maschinen betrieben werden, dann wirden mindestens zehn bis 15
% der verfugbaren Hardwareressourcen, alleine durch den Hypervisor der virtuellen Maschinen
verbraucht. Zusatzlich verbrauchen auch die virtuellen Maschinen noch mehr Ressourcen, als Docker
Container. Fur Unternehmen ist dies also ein einfacher Punkt Kosten zu sparen und gleichzeitig
Hardwareressourcen effizienter zu verwenden. (Anderson, 2015, S.103)

https://wiki.eolab.de/ Printed on 2026/02/01 23:23



2026/02/01 23:23 3/3 Docker

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:

Last update: 2021/08/24 17:34

HSRW EOLab Wiki - https://wiki.eolab.de/


https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612889112

	Docker
	Funktionsweise und Unterschied zu virtuellen Maschinen
	Einsatzgebiete


