
2026/02/01 23:22 1/3 Docker

HSRW EOLab Wiki - https://wiki.eolab.de/

Docker

Bei Docker handelt es sich um ein open-source (Apache 2.0 Lizenz) System um sogenannte Container
zu betreiben und zu verwalten. Dies dient im besonderen dazu Code effizient in kurzer Zeit auf
diversen Systemen lauffähig zu machen. (Turnbull, 2019, S.7-8) So hilft Docker eine Applikation von
der Infrastruktur zu separieren und so zu isolieren (Docker Inc., o.J.a).

Funktionsweise und Unterschied zu virtuellen Maschinen

Das Docker-System besteht aus drei essentiellen Teilen:

Docker Images
Docker Container
Docker Engine

Die Docker Images sind die Bauanleitung für die Docker Container. Die Images enthalten dabei eine
Schritt für Schritt-Anleitung, wie ein Container generiert beziehungsweise aufgebaut werden muss. Als
Beispiel nennt Turnbull:

Füge eine Datei hinzu.1.
Führe einen Befehl aus.2.
Öffne einen Port.3.

Wie zusehen ist, sind diese Images sehr trivial aufgebaut. Das macht es besonders einfach sie zu
teilen und zu modifizieren. (Turnbull, 2019, S.12) Ein weiterer Vorteil der Images ist es, dass sie
aufeinander basieren können. So ist es beispielsweise möglich ein eigenes Image zu erstellen,
welches auf dem Image von Ubuntu basiert. So ein Image wird dann in einer Dockerfile erstellt. Jeder
weitere hinzugefügte Befehl wird als eine neue Ebene gesehen. Ein Vorteil welcher Docker von
anderen Container-Systemen unterscheidet ist, dass Docker ein Image nicht komplett neu baut, wenn
in der Dockerfile sich eine Ebene verändert. Es werden lediglich die veränderten Ebenen erneuert.
Das macht, laut Docker Inc., die Images so klein und schnell. Die meisten der allgemein bekannten
Docker Images werden in Registries veröffentlicht, wo sie für jeden zur Verfügung stehen. Eine der
bekanntesten Registries ist Docker Hub. (Docker Inc., o.J.a) Die Docker Container werden zur Laufzeit
von der Docker Engine mit Hilfe der Docker Images generiert. Da Docker Container standardisiert
sind, sind sie mit anderen Container Umgebungen kompatibel. (Docker Inc., o.J.b) Auch das macht sie
sehr portabel. Dies wird auch dadurch gefördert, dass die Container selber kein eigenes
Betriebssystem und Kernel umfassen, da dies mit dem Host-System geteilt wird. Dies ist auch
gleichzeitg einer der großen Unterschiede zu virtuellen Maschinen. Ein Container beinhaltet lediglich
die Anwendung und deren Abhängigkeiten. So ist es auch möglich mehrere Container auf einem Host
zu betreiben, wobei diese stets voneinander isoliert sind. Virtuelle Maschinen hingegen sind zwar
auch voneinander isoliert, aber sie eignen sich besser dazu, physikalisch Hardware zu emulieren.
Dafür enthält jede virtuelle Maschine ein eigenes Betriebssystem inklusive Kernel. Das macht sie
deutlich ressourcenintensiver in der Bereitstellung, was sich auch auf die Perfomance negativ
auswirkt. (Rad, Bhatti & Ahmadi, 2017) Auch wenn die Container isoliert vom Host-Betriebssystem
arbeiten, bietet Docker die Möglichkeit, gewisse Teile des Containers zu öffnen und so eine einfachere
Kommunikation zwischen Container und Host-Betriebssystem zu ermöglichen. Beispielsweise können
Ports für einen Container freigegeben werden. Dies ist möglich, da jeder Container eine eigene
Netzwerkschnittstelle besitzt. Die Docker Engine (später mehr dazu) kann diesen Port dann für das



Last update: 2021/08/24 17:34 user:jan001:ba:docker https://wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612890190

https://wiki.eolab.de/ Printed on 2026/02/01 23:22

Host-Betriebssystem auf einen anderen Port umleiten. Dies ermöglicht zum Beispiel zehn Container
mit einer Anwendung die Port 80 verwendet zu betreiben und für das Host-Betriebssystem sind es
dann die Ports 42001, 42002 und so weiter (siehe Abbildung HIER NOCH NE ABBILDUNG MACHEN).
Jeder Container hat dann nach außen hin einen eigenen Port. In ihrem Container benutzt die
Anwendung aber immer den selben Port. (Anderson, 2015, S.104f) Auch können für Docker Container
sogenannte Volumes eingerichtet werden. Dies ist ein persistener Speicher für Daten, welcher nicht
zwingend an einen Container gebunden sein muss. Auf diesen Speicher können sowohl mehrere
Container als auch das Host-Betriebssystem direkt zu greifen. Dies wird beispielsweise häufig genutzt
um Quellcode in den Container zu laden ohne das Image zu verändern oder um Ereignisprotokolle
auch außerhalb des Containers verfügbar zu machen. Diese Funktion wird auch durch die Docker
Engine ermöglicht. (Turnbull, 2019, S.113) Die Docker Engine, auch bekannt als Docker Daemon,
stellt im Docker System quasi den Verwalter dar. Die Engine wird über eine RestAPI gesteuert. So
können Images, Container, Netzwerke und Volumen verwaltet werden. Sie steuert auch die
Kommunikation zwischen den laufenden Docker Containern und dem Host-Betriebssystem. Dazu
zählen beispielsweise die Verteilung von Systemressourcen und der Zugriff auf Basisfunktionalität des
Host-Betriebssystems. (Docker Inc., o.J.a)

Oftmals besteht eine Applikation nicht nur aus einer Anwendung. So können Webapplikationen
beispielsweise einen Backend-Webserver und dazu noch eine oder mehrere Datenbanken enthalten.
Dafür können natürlich mehrere Container einzeln über die Kommandozeile mit Hilfe der Docker
Engine angelegt und verwaltet werden. Dies ist aber sehr aufwändig und auch schlecht replizierbar.
Genau für solche Einsatzzwecke wurde das Tool Docker-Compose entwickelt. Docker-Compose
ermöglicht es in einer Datei alle Services (eine Konfiguration eines Containers), Volumen, Netzwerke
und Abhängigkeiten zu definieren. Diese Datei kann dann einfach und schnell geteilt werden, um eine
Applikation in einer Entwicklungs-, aber auch in einer Produktionsumgebung lauffähig zu machen.
Dabei können beispielsweise Portumleitungen oder Umgebungsvariablen schnell geändert werden,
um die Applikation ihrer Umgebung anzupassen. (Smith, 2017)

Einsatzgebiete

Docker wird sowohl in der Entwicklung, als auch in der Produktion eingesetzt. Besonders von Vorteil
ist, dass die Container eine standardisierte Umgebung, in welcher die Applikation betrieben wird,
schaffen. Diese Umgebung ist dann gleich in der Entwicklung, beim Testen und in der Produktion. Dies
verhindert das Auftreten von Fehlern, welche mit der Umgebung zusammenhängen. Auch ist es für
Entwickler einfacher Aktualisierungen an einen Kunden zu übertragen, da nicht eine ganze Applikation
aktualisiert werden muss, sondern nur ein Teil dieser. Dieser Ablauf wird Continuous Integration und
Continuous Deployment genannt. (Docker Inc., o.J.a) Dies spart vor allem Zeit. Eine alternative
Methode wäre es dies über virtuelle Maschinen aufzusetzen. Dabei würde jedoch alleine die Zeit,
welche es benötigt eine solche virtuelle Maschine einzurichten, bei über 10 Minuten liegen. Weiterhin
müsste dies für jede Umgebung einzeln getan werden. Sollte eine virtuelle Maschine fehlerhaft sein,
muss diese natürlich auch wieder neu eingerichtet werden, was vor allem in einer
Entwicklungsumgebung und der Testumgebung häufig vorkommt. Das andere Einsatzgebiet sind
Umgebungen, in denen besonders viele Applikationen oder Instanzen einer Applikation betrieben
werden. Würde dies über virtuelle Maschinen gelöst werden, dann würden mindestens zehn bis 15 %
der verfügbaren Hardwareressourcen, alleine durch den Hypervisor der virtuellen Maschinen
verbraucht. Zusätzlich verbrauchen auch die virtuellen Maschinen noch mehr Ressourcen, als Docker
Container. Für Unternehmen ist dies also ein einfacher Punkt Kosten zu sparen und gleichzeitig
Hardwareressourcen effizienter zu verwenden. (Anderson, 2015, S.103)



2026/02/01 23:22 3/3 Docker

HSRW EOLab Wiki - https://wiki.eolab.de/

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:
https://wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612890190

Last update: 2021/08/24 17:34

https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=user:jan001:ba:docker&rev=1612890190

	Docker
	Funktionsweise und Unterschied zu virtuellen Maschinen
	Einsatzgebiete


