
2024/04/19 14:06 1/14 DS3231 Real Time Clock

HSRW EOLab Wiki - https://wiki.eolab.de/

↩ Back to the main page

DS3231 Real Time Clock

1. About the Module

The DS3231 (figure 1) is a cheap but highly accurate RTC (Real Time Clock) module which
communicates using I2C (Inter Integrated Circuit), which is a two-wire communication bus system.
The IC includes a temperature-compensated crystal oscillator (TCXO). The module in figure 1 with the
breakout pins is actually called ZS-042; the DS3231 is only the large IC at the top of the module, but
both terms are used commonly.

A real time clock module such as the DS3231 holds a small battery cell which keeps the module
running even when there is no power on the VCC pin. It keeps track of the time by using a small
quartz oscillator which has a natural frequency of 32768 Hz ($2^{15}\mathrm{Hz}$). The frequency
of the crystal must stay as close as possible to these 32.768kHz for the time to be accurately tracked.
However, the frequency changes very slightly with temperature. Therefore, the module also contains
a thermometer and evaluates the influence of the temperature on the frequency about once a
minute. As the influence of a certain temperature is predictable, and the frequency can be changed
by the capacitance of the system, it is possible to decently compensate for these small inaccuracies
by adjusting the capacitance. This is done automatically by the module; therefore, it is a temperature-
compensated crystal oscillator (TCXO).

In comparison to other cheap RTC modules, the DS3231 is highly accurate due to its temperature
compensation resulting in about 2 min of drift maximum within one year of operation. Another huge
advantage is the possibility of programming up to two different alarms. When these alarms are
triggered, the module can pull the voltage on its SQW pin low triggering an interrupt in the MCU.

The module can be especially useful for saving energy during projects where energy efficiency is
highly important such as in this garden pond monitoring station because it is supposed to be self-
sustainable in the end. The MCU (ESP32 or Arduino) can enter a sleep mode where most components
are switched off completely and the power consumption drops significantly. To wake the MCU up
again, it is possible to attach an interrupt to one of the MCUs interrupt pins (GPIO 2 & 3 for Arduino
UNO and all GPIOs for ESP32) to make a hardware interrupt. The interrupt can be for example a signal
going from HIGH to LOW or the other way around. The DS3231 is capable of putting out a square
wave / interrupt signal on the SQW pin at a certain point in time. It can thus be used for example to
wake up the ESP32 from sleep mode once every hour. The ESP32 can then reset the alarm, take
sensor measurements, transmit the data using MQTT and go back to sleep mode afterwards.

As the ESP32 will only take hourly measurements, most of the power consumption would occur while
it is idle, waiting for another measurement to be taken. The combination of an RTC module and a
hardware interrupt can thus save a lot of the battery’s energy in the final application.

https://wiki.eolab.de/doku.php?id=amc2020:group_n:start

Last update: 2021/08/24 17:35 amc2020:group_n:ds3231rtc https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

https://wiki.eolab.de/ Printed on 2024/04/19 14:06

Figure 1 DS3231 RTC module

2 Data Transmission and Working Principle

2.1 I2C

As mentioned before, the DS3231 communicates using I2C. In an I2C bus, there is only one master
device (the MCU) and up to 112 slave devices. In this case only the microcontroller and the RTC
module are connected on the bus. The bus itself consists of a data line (SDA – Serial Data) and a clock
signal (SCL – Serial Clock) issued by the master. Each device has its own I2C address which must be
unique within the bus; for the DS3231 it is 104 by default but it can be changed by bridging the solder
pads A0 to A2 (8 possible addresses).

Each communication starts with a start signal (start condition) by the master by pulling SDA LOW
while SCL is HIGH and ends with a stop condition by pulling SDA HIGH while SCL is HIGH. The data
transfer in between happens due to the master or the slave pulling the SDA signal low in certain
intervals which can represent either a logic 0 or a logic 1 depending on the timing, similar to the 1-
Wire bus used for the DS18B20.

After the start condition, the master sends the address (1 Byte) of the slave he wants to communicate
with which only the slave with that address will react to. After sending the address, the master sends
a single direction bit (R/W - Read/Write) representing the communication mode. If it is a logic 1, the
master requests data to be sent from the slave (Slave Transmitter Mode). If it is a logic 0, the master
sends data to the slave (Slave Receiver Mode). In either case the slave will send an acknowledge
signal (ACK) by pulling SDA low. Afterwards the real data transmission starts.

In slave transmitter mode (figure 2), the slave will send one byte of data, followed by an ACK signal by
the master. If the slave receives the ACK signal, it continues with the next byte and so on. The
transmission ends when the master does not respond to a byte by sending a not acknowledge (NACK)
signal which is followed by the stop signal.

In slave receiver mode (figure 3), the communication works the other way around, the master sends
one byte, the salve sends an ACK signal and the next byte is transmitted. The communication stops
when the master issues a stop signal after the slaves ACK signal.

The is also the possibility of the master sending a repeated start signal (SR) instead of a stop
condition, after which another I2C address is sent and another transmission starts.

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:ds3231.jpg

2024/04/19 14:06 3/14 DS3231 Real Time Clock

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 2 Slave Receiver Mode (Source: DS3231 Datasheet p.16)

Figure 3 Slave Transmitter Mode (Source: DS3231 Datasheet p.16)

2.2 Registers

The module contains 19 8-bit registers (0x00 to 0x12) which can be used to read information from the
module or change the modules settings (table 1). Registers 1 – 7 (0x00 – 0x06) contain the data for
seconds, minutes, hours, day of the week, day of the month, month, and year, respectively. By writing
into these registers, the time and date of the module can be configured. The module automatically
updates these registers as time goes on, so that the actual time can be obtained by reading these
registers later on. The module also automatically compensates for leap years and different lengths of
the months.

Bit 6 of the hour register (0x02) can be used to change between 24 hour and AM/PM format where a 0
indicates 24 hour format. All of the registers (also the alarm registers) are written in binary coded
decimal format. That means the bit 0 – 3 count the respective time units below a value of 10; so, they
can have a value of 010 = B0000 to 910 = B1001. Depending on the register, bits 4 – 6 count the 10s
of the time unit; the binary value they contain must be multiplied by 10 to obtain the decimal value.
As an example, 57 minutes can be separated into 50 and 7. The 7 is written as 7 in bits 0 – 3 and 50 is
written as 5 in the bits 4 – 6. The decimal (DEC) 57 written in binary coded decimal (BCD) would be
B01010111. This is particularly important to consider when the alarm or time is set or read.

Register 8 – 11 (0x07 – 0x0A) contain the data for alarm 1. The registers store seconds, minutes,
hours and date or day of the week. If the alarm is activated, the module checks every second if the
time in the alarm matches the time in the time registers above. If that is the case, it can output an
interrupt signal. The MSB (bit 7) gives information to the module which time data to consider. For
example, can only check if the seconds of the registers match, or the seconds and minutes, or the
seconds, minutes and hours and so on. Which value those bits (A1M1 – A1M4) need to have is listed in
table 2. The 24 hour or AM/PM format can be selected the same way as in the time registers. Bit 6 in
the day/date register determines if the days of the week or the date (day of the month) should be
considered; a logic 1 selects day of the week, a logic 0 selects date.

The following registers 12 – 14 (0x0B – 0x0D) are the same as the previous ones but are for alarm 2.
The only difference is that alarm two cannot check if the seconds match, it is thus not as accurately
programmable. Register 15 (0x0E) is the control register which control different functions of the
sensor. A logic 0 in the EOSC bit enables the oscillator to continue when the power supply is switched

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:fig_3_slave_receiver_mode.jpg
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:fig_2_slave_transmitter_mode.jpg
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf

Last update: 2021/08/24 17:35 amc2020:group_n:ds3231rtc https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

https://wiki.eolab.de/ Printed on 2024/04/19 14:06

to the battery. BBSQW is for choosing the output of the SQW pin of the module, if it contains a 1, it
outputs a square wave, otherwise SQW can be used for sending the hardware interrupt to the MCU.
Writing a logic 1 to the CONV bit (Conversion) issues a temperature measurement. RS2 and RS1
determine the frequency of the square wave and are not important in this project. A2IE enables the
interrupt for alarm 2, which is not used here. A1IE (Alarm 1 Interrupt Enable) enables the interrupt for
alarm 1 when logic 1 is written to it.

Register 16 (0x0F) is the status register containing information on the status of the module. OSF
(Oscillator Stop Flag) should always be 0; if it contains a logic 1, there is something wrong with the
oscillator. EN32kHz is for enabling the square wave signal. BSY (Busy) is set to logic 1 when the
module is busy for example doing a temperature conversion. A2F and A1F (Alarm 1 Flag) contain a
logic 1, when the alarm is triggered. The last three registers contain information on the capacitance
for temperature compensation and on the last temperature measurement and are not important in
this project.

In conclusion, the first registers are set to the desired time and are actualized continuously by the
module. The following two groups of registers contain the alarm trigger time and the bit masks for
which condition to check. The next two registers are only for enabling or disabling certain functions
and reading operation data of the module.

An alarm is triggered when the alarm register matches with the time register which puts the alarm
flag to a 1. If the alarm is enabled (A1IE) and interrupts are activated (INTCN), the SQW pin of the
module pulls low which can then trigger an interrupt in the microcontroller and wake it up from sleep
mode.

Table 1 Timekeeping Registers (Source: DS3231 Datasheet p.11)

Table 2 Alarm Mask Bits (Source: DS3231 Datasheet p.12)

https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:table_1_rtc_registers.jpg
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf

2024/04/19 14:06 5/14 DS3231 Real Time Clock

HSRW EOLab Wiki - https://wiki.eolab.de/

3 Technical Specifications and Setup

As it was convenient to program, the DS3231 was programmed using the Arduino UNO instead of the
ESP32. Later most of the code is not needed anymore as it only serves the initial setup of the RTC
module. Here only the alarm for the DS3231 is programmed and the time is set. The handling of the
interrupt signal is done in the implementation of the deep sleep mode of the ESP32 later on. For
testing purposes only an LED was used to output a signal when the interrupt is triggered.

The module can be operated with 3.3 or 5V input voltage. It needs a CR2302 or similar sized 3V
battery that can be plugged in on the backside so that operation continues when there is no power
supply on the pins. The module has 6 pins, VCC and a GND pin which are connected to 3.3V and 0V,
respectively. SDA is connected to A4 and SCL is connected to A5 on the Arduino. SQW is connected to
GPIO 2. The 32kHz pin is not needed and left unconnected.

For testing, an LED was connected to GPIO 4 using a 330Ω resistor in series (figure 4). The operating
temperature of the DS3231SN-IC is -40°C - 85°C but should be kept between 0°C – 70°C for more
accurate results.

As the SQW is an open-drain output, it can only pull a HIGH signal to LOW. To work it needs an
external pullup resistor. With the Arduino UNO and the ESP32, their internal pullup resistors can be
used to achieve the same result.

There are different versions of the module, some of which have a red 1N4148 diode and
a 200Ω resistor on them, which are connected to the battery. When power is supplied to
the pins, this can be used to charge the battery. However, the battery is only a 3V
battery and connecting the Arduino with 5V to VCC can overcharge the battery, reduce
its lifetime significantly and pose a fire hazard. If the charging circuit is on the module,
either 3.3V should be supplied or the circuit (diode or resistor) should be removed or the
connection on the PCB has to be cut.

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:bitmask_alarm_1.jpg

Last update: 2021/08/24 17:35 amc2020:group_n:ds3231rtc https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

https://wiki.eolab.de/ Printed on 2024/04/19 14:06

Figure 4 Schematic on how to connect Arduino, DS3231 and LED. The battery charging circuit is
marked with a red circle.

4. Programming the DS3231

The aim for programming the DS3231 was to set the module's time registers correctly and set and
activate the alarm to put out an interrupt signal once an hour to wake up the ESP32 from deep sleep
in the final application.

There are a number of libraries available for the DS3231 RTC module, multiple of which were tested
out. However, most of them are rather poorly documented, most have different features and some of
them did not include the necessary function for the scope of the project.

In the end, after being inspired by the approach of Ralph Bacon, I programmed the DS3231 only using
the Wire.h library for I2C communication without a dedicated DS3231 library.

The sketch by Ralph Bacon only included setting and reading the time from the module and printing
the result to the serial monitor. Most of this was used with only minor changes in this sketch. The
implementation of the interrupt and the setting and clearing of alarm 1 was done by me.

For anyone interested, I also made my own library for the DS3231 RTC module. The
library allows setting and reading the time as well as using alarm 1 and 2 and also allows
to read and change the status and control registers. There are also functions included for
directly printing the time and the register settings to the serial monitor for an easy setup.

The library can be downloaded as a zip file from

here

https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:ds3231_arduino_led_breadboard_charging_circuit.png
https://wiki.eolab.de/lib/exe/fetch.php?tok=d53141&media=https%3A%2F%2Fgithub.com%2FRalphBacon%2FDS1307-DS3231-Real-Time-Clocks%2Fblob%2Fmaster%2FDS1307_DS3231_Reference_Code.ino
https://wiki.eolab.de/lib/exe/fetch.php?media=amc2020:group_n:ds3231lib.zip

2024/04/19 14:06 7/14 DS3231 Real Time Clock

HSRW EOLab Wiki - https://wiki.eolab.de/

.

To understand what is done by the functions, I recommend checking the cpp file in the
library folder and the DS3231 Datasheet. Example sketches will soon be included as well.

4.1 The Code

DS3231_Time_Alarm_set

//DS3231 Time read/set and Alarm

//Libraries
#include <Wire.h> //1

//I2C Address of the Module
#define DS3231RTC_I2C_ADDRESS 0x68 //2

//Day of the week
#define MONDAY 1 //3
#define TUESDAY 2
#define WEGNESDAY 3
#define THURSDAY 4
#define FRIDAY 5
#define SATURDAY 6
#define SUNDAY 7

//Alarm 1 Settings
#define ALARM_ONCE_PER_SECOND 0 //4
#define ALARM_SECONDS_MATCH 1
#define ALARM_SECONDS_MINUTES_MATCH 2
#define ALARM_SECONDS_MINUTES_HOURS_MATCH 3
#define ALARM_SECONDS_MINUTES_HOURS_DATE_MATCH 4
#define ALARM_SECONDS_MINUTES_HOURS_DAY_MATCH 5
//Alarm 1 Mask Bits Array
byte Alarm1MaskBits [6]={B01111000, //5
 B01110000,
 B01100000,
 B01000000,
 B00000000,
 B10000000};

//Arduino UNO Interrupt pin and LED Pin
const uint8_t IntPin = 2; //6
const uint8_t LEDPin = 4;
bool ledstatus = 0;

//Interrupt Service Routine Variable

https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://wiki.eolab.de/doku.php?do=export_code&id=amc2020:group_n:ds3231rtc&codeblock=0

Last update: 2021/08/24 17:35 amc2020:group_n:ds3231rtc https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

https://wiki.eolab.de/ Printed on 2024/04/19 14:06

volatile byte Count = 0; //7

void setup(){
 Serial.begin(9600);

 Wire.begin(); //8
 pinMode(IntPin, INPUT_PULLUP); //9
 pinMode(LEDPin, OUTPUT);
//10
 //Set time: Seconds, Minutes, Hours, Day, Date, Month, Year
 setRTCTime(0,15,10,FRIDAY,24,7,20);
//11
 //Set alarm 1: Seconds, Minutes, Hours, Day/Date, Setting
 setRTCAlarm1(0,30,12,12, ALARM_ONCE_PER_SECOND);
//12
 attachInterrupt(digitalPinToInterrupt(IntPin), ISRLED, FALLING);
//13
}

void loop(){
 clearAlarm1(); //14
 if(Count==1){ //15
 Count = 0;
 ledstatus = !ledstatus;
 digitalWrite(LEDPin, ledstatus);
 }
}

//Convert from decimal to binary coded decimal
byte decToBCD(byte val){ //16
 return (((val/10)<<4)+val%10);
}

//Convert from binary coded decimal to decimal
byte bcdToDec(byte val){ //17
 return (10*(val>>4) + val%16);
}

void ISRLED(){ //18
 Count++;
}

//Set the RTC Time Registers //19
void setRTCTime(byte Second, byte Minute, byte Hour, byte Day, byte
Date, byte Month, byte Year){
 Wire.beginTransmission(DS3231RTC_I2C_ADDRESS);//20
 Wire.write(0x00); //21
 Wire.write(decToBCD(Second)); //22
 Wire.write(decToBCD(Minute));
 Wire.write(decToBCD(Hour));
 Wire.write(decToBCD(Day));

2024/04/19 14:06 9/14 DS3231 Real Time Clock

HSRW EOLab Wiki - https://wiki.eolab.de/

 Wire.write(decToBCD(Date));
 Wire.write(decToBCD(Month));
 Wire.write(decToBCD(Year));
 Wire.endTransmission(); //23
}

//Set Alarm 1 //24
void setRTCAlarm1(byte Second, byte Minute, byte Hour, byte DayDate,
byte Setting){

 Second = decToBCD(Second) + bitRead(Alarm1MaskBits[Setting],3)*128;
//25
 Minute = decToBCD(Minute) + bitRead(Alarm1MaskBits[Setting],4)*128;
 Hour = decToBCD(Hour) + bitRead(Alarm1MaskBits[Setting],5)*128;
 DayDate = decToBCD(DayDate) + bitRead(Alarm1MaskBits[Setting],6)*128
+ bitRead(Alarm1MaskBits[Setting],7)*64;

 Wire.beginTransmission(DS3231RTC_I2C_ADDRESS);
 Wire.write(0x07); //26
 Wire.write(Second);
 Wire.write(Minute);
 Wire.write(Hour);
 Wire.write(DayDate);
 Wire.endTransmission();
 Wire.beginTransmission(DS3231RTC_I2C_ADDRESS);
 Wire.write(0x0E); //27
 Wire.write(B00011101); //28
 Wire.endTransmission();
}

//Clear Alarm 1
void clearAlarm1(){ //29
 Wire.beginTransmission(DS3231RTC_I2C_ADDRESS);
 Wire.write(0x0F);
 Wire.write(B00000000);
 Wire.endTransmission();
}

//Read the RTC Time Registers //30
void readRTCTime(byte* Second, byte* Minute, byte* Hour, byte* Day,
byte* Date, byte* Month, byte* Year){

 Wire.beginTransmission(DS3231RTC_I2C_ADDRESS);
 Wire.write(0x00); //31
 Wire.endTransmission();

 Wire.requestFrom(DS3231RTC_I2C_ADDRESS, 7); //32
 *Second = bcdToDec(Wire.read()); //33
 *Minute = bcdToDec(Wire.read());
 *Hour = bcdToDec(Wire.read());
 *Day = bcdToDec(Wire.read());

Last update: 2021/08/24 17:35 amc2020:group_n:ds3231rtc https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

https://wiki.eolab.de/ Printed on 2024/04/19 14:06

 *Date = bcdToDec(Wire.read());
 *Month = bcdToDec(Wire.read());
 *Year = bcdToDec(Wire.read());
}

//Display the Time over the Serial Monitor
void displayTimeSerial(){ //34
 byte Second, Minute, Hour, Day, Date, Month, Year;
 readRTCTime(&Second, &Minute, &Hour, &Day, &Date, &Month, &Year);

 Serial.print(Hour);
 Serial.print(":");
 if(Minute <10) Serial.print("0");
 Serial.print(Minute);
 Serial.print(":");
 if(Second <10) Serial.print("0");
 Serial.print(Second);
 Serial.print(" ");
 Serial.print(Date);
 Serial.print("/");
 Serial.print(Month);
 Serial.print("/");
 Serial.print(Year);
 Serial.print(" Day of the week: ");
 switch(Day){
 case 1:
 Serial.println("Monday");
 break;
 case 2:
 Serial.println("Tuesday");
 break;
 case 3:
 Serial.println("Wednesday");
 break;
 case 4:
 Serial.println("Thursday");
 break;
 case 5:
 Serial.println("Friday");
 break;
 case 6:
 Serial.println("Saturday");
 break;
 case 7:
 Serial.println("Sunday");
 break;
 }
}

2024/04/19 14:06 11/14 DS3231 Real Time Clock

HSRW EOLab Wiki - https://wiki.eolab.de/

4.2 The Code Explained

As explained before, no external library needs to be included, only the Wire.h library for I2C1.
communication for reading and writing to the registers of the DS3231.
The I2C address of the DS3231 needs to be defined. By default (if no solder connections are2.
used) it is hexadecimal 0x68.
When setting the day of the week later, 1 represents Monday, and 7 represents Sunday. To3.
make it more intuitive the days are here defined.

As explained in section 2, the alarm register mask bits define the alarm rate. For example,4.
choosing the ALARM_SECONDS_MINUTES_MATCH option would trigger an alarm once every
hour - when the seconds and the minutes in the alarm and the time register match.
The byte array Alarm1MaskBits[6] is basically an array containing table 2 with the mask5.
bits for the alarm rates, where each array element represents a row from the table. The MSB in
each element represents the bit for selecting either day or date format. Bit 6 is for A1M4, bit 5
is A1M3, and so on. The three LSBs are not needed and are just set to 0. Later on, using the
previously defined (4) alarm 1 settings, one element is chosen from the array to set the alarm
rate accordingly.

Here the Arduino pins for the interrupt (IntPin) and for the LED (LEDPin) are chosen. The6.
interrupt pin has to be eitehr pin 2 or 3 for the UNO. the boolean variable ledstatus is just
used in the main loop to switch the LED on and off.
When an interrupt is triggered, the MCU executes the attached interrupt service routine ISR7.
which is defined later. The variable Count is used to count the number of interrupts triggered
and is incremented by 1 in the ISR. Variables that are changed inside an ISR need to be
configured as volatile.
Configuring a variable as volatile tells the Compiler to load the variable from the RAM instead of
the a storage register. This is necessary when the variable can be changed from somewhere
else than the code that it is appearing in, for example a concurrently executed function like an
ISR.

In the setup(), the method Wire.begin() starts the I2C bus connecting DS3231 and Arduino8.
UNO.
The interrupt pin IntPin needs to be configured as an input. Furthermore, the DS3231's SQW9.
pin (which is activated when an alarm is triggered) is an open drain output, which means it
shorts the pin to GND when active. The Arduino interrupt pin (pin 2) needs to be HIGH normally,
so that the voltage drop triggered by the SQW pin can be detected. As the Arduino has internal
pullup resistors, activating them using INPUT_PULLUP is sufficient for this.
The pin for the LED needs to be configured as an OUTPUT to switch the LED on and off.10.
Here the later defined function setRTCTime is called to configure the time, date and day of the11.
week of the DS3231. As an argument it needs the seconds, minutes, hours, day of the week,
day of the month, month and year. After the time is configured for the first time, this should be
commented out to prevent the time from being reset every time the Arduino restarts.
The function setRTCAlarm1 configures the seconds, minutes, hours, date or day of the week,12.
as well as the setting for the alarm rate for alarm 1 by writing to the alarm registers.
Furthermore it activates alarm 1 and enables interrupts in the status register. The function is
defined later on. If the alarm is already configured and working, this line of code can be
commented out as well.
To attach an interrupt on the Arduino UNO, the function attachInterrupt() is used. As first13.

Last update: 2021/08/24 17:35 amc2020:group_n:ds3231rtc https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

https://wiki.eolab.de/ Printed on 2024/04/19 14:06

argument the function digitalPinToInterrupt() is given and as its argument the Arduino
interrupt pin (2) is submitted. Afterwards, the function expects the name of the interrupt service
routine which is called whenever an interrupt is triggered; in this sketch it is called ISRLED. The
last argument is the interrupt mode. There are 5 (for the UNO 4) different modes. Here the
mode FALLING is necessary which indicates that the interrupt is triggered whenever the
interrupt pin goes from HIGH to LOW.

The main loop() loop itself is very short. Firstly, by removing the alarm 1 flag in the DS323114.
status register with the function clearAlarm1() defined below, alarm 1 is reset. In the final
application this will only be done once after the MCU wakes up from deep sleep.
The if control structure checks the variable Count. In this example, the alarm was chosen to15.
go off every second (12), so the Count variable is incremented by 1 once a second, so the
condition becomes true after 1 second. It then resets the counter variable and changes the
status of the LED. So in conclusion, it switches the LED on and off in 1 second intervals. The
intervals can be changed by adjusting the condition. This is just used as an indicator to check if
the interrupt is working as supposed to.

The function decToBCD() returns and expects as an arguement a byte type value. It is used to16.
convert a decimal number DEC to a binary coded decimal number BCD. As explained before,
the time and alarm registers of the DS3231 are written in BCD format. However, DEC format is
much more intuitive for the user to set the alarm and time of the module. Therefore, this
function is used to convert the decimals given as function arguments for the two functions
called in the setup (11 & 12) to the format that the DS3231 understands.
This function does the exact opposite of the previous one. It converts binary coded decimal17.
back to decimal. This is only used for optionally checking if the time set in the DS3231 is
correct.

The function ISRLED() is serving as the interrupt service routine called when an interrupt is18.
triggered. Here it is used only to increment the counter variable and active the flag for the
interrupt status. There are a few things to consider when writing an interrupt service routine.
ISRs should always be as as short as possible because when they are called, the normal
program stops as long as they are running; so functions that need a lot of time like print
functions should be avoided. Furthermore,delay(), millis()() or micros() are not
working inside an ISR and variables used in an ISR need to be volatile. More information can
be found on the Arduino Reference page.

As explained before (11), setRTCTime() is used to configure the time registers of the DS3231.19.
The method Wire.beginTransmission() starts a transmission on the I2C bus in the slave20.
receiver mode. As a function argument, the already defined I2C address (2) is given. Only the
slave with that exact address will respond to the now following communication.
The method Wire.write() transmits the byte given as an argument. The first write() sets21.
the register pointer of the DS3231. Here the pointer is set to 0x00, which means that the
following input is stored in the register with the address 0x00 which is the time register for the
seconds.
Now the value for Second given as function argument is converted into BCD format and is then22.
sent on the I2C bus to the DS3231 which overwrites the 0x00 register with the new information.
That means the seconds of the DS3231 are configured. The register pointer then automatically
jumps to the next register which is storing the minutes. As all the time registers are grouped
together, all of them can be configured in one transmission, one after the other.
When all the registers are configured and the DS3231 has a new time set, the I2C transmission23.
is stopped with Wire.endTransmission().

https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

2024/04/19 14:06 13/14 DS3231 Real Time Clock

HSRW EOLab Wiki - https://wiki.eolab.de/

Here follows the definition of function setRTCAlarm1() which was used in the setup() (12).24.
To configure the four registers of alarm 1, it is necessary to convert the seconds, minutes, hours25.
and date/day into BCD format again. However, as can be seen in table 1, the alarm registers
also contain the mask bits for the alarm rate which are stored as A1M1 to A1M4 in the MSBs of
the four. The Which mask bit is used for which register is determined by the element chosen in
the mask bit array (5).
The function bitRead() is used to read a single bit from a byte. The first argument is the byte
to read from; here the Alarm1MaskBits[] array is used and the byte element to read is
determined by the Setting (4). ALARM_ONCE_PER_SECOND thus means the first element from
the array which is B01111000, is chosen to read from. The second argument is the number of
the bit, where 0 is the LSB and 7 is the MSB. The bit mask for the seconds register is the 4th bit
from the right, so bit number 3. To now place that bit correctly in the Second byte, it mus be
written inthe A1M1 bit (MSB). The MSB has a decimal value of 128, so the mask bit is just
multiplied by 128 which puts it to the front.
This same process is repeated for the minutes hours and days. What changes is the position of
the respective mask bit in the mask bit array element; for minutes it is 4, for hours 5 and for
days or date 6.
The hour format will automatically be 24 hours like in the time register because bit 6 stays
always 0 (see table 1). However, when the alarm rate is chosen to be either once a week or
once a month, i.e. days/date are matched, that has to be changed in the code. Therefore, the
MSB of the array element contains a 0 for matching the date and a 1 for matching the day
(table 2). This value is read from the array with another bitRead() and the retrieved value is
multiplied with 64 to put it to bit 6 of the DayDate byte.
After configuring the values of the bytes for setting the alarm, another transmission to the RTC26.
is started and the register pointer is set to register 0x07 containing the alarm settings for the
seconds. Then the before calculated bytes are transmitted one after another to configure the
alarm. and the transmission is ended.
To activate alarm 1 and enable the interrupt output throug the SQW pin, another transmission is27.
started and the register pointer is set to 0x0E which is the DS3231's control register.
Then the byte B00011101 is transmitted through I2C to configure the control register. What it28.
does can be found in detail in the datasheet on page 13. In short, what each bit does is: B: 0 -
turn on the oscillator; 0 - no square wave output; 0 - no temperature conversion command; 1 -
square wave frequency setting - 1 square wave frequency setting; 1 -activate interrupt output;
0 - deactivate alarm 2; 1 - activate alarm 1.
After that, the alarm is set and an interrupt is issued when the respective register entries
match.

Whenever the alarm is activated, the alarm flag bit in the DS3231 status register is switched to29.
a 1 and needs to be reset manually by changing the bit back to a 0. The function
clearAlarm1() does exactly that. It starts a transmission, sets the register pointer to the
status register and resets the value. More information can be found in the datasheet on page
14.

The last two functions are not used in the sketch but are useful to check whether the DS323130.
has a correctly configured time register. The function readRTCTime() reads the values from
the register and the function displayTimeSerial() prints it to the serial monitor. In the
functions pointers are used to be able to only use local instead of global variables. The local
variables Second, Minute, Hour and so on are declared locally in the displayTimeSerial()
function. Then their addresses are given as function argument to the readRTCTime() which
gives those addresses to its own locally declared pointer variables of the same name. The
pointer variables are indicated by the asterisk * next to the variable name.

Last update: 2021/08/24 17:35 amc2020:group_n:ds3231rtc https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

https://wiki.eolab.de/ Printed on 2024/04/19 14:06

Then the I2C transmission is started in slave receiver mode to set the register pointer to the31.
seconds register and the transmission is ended again.
Another transmission is started but in the slave transmitter mode using the32.
Wire.requestFrom() method. It needs the I2C address of the slave and the number of bytes
which are requested.
The dereferencing operator, the asterisk *, is used to change the value at the address of the33.
pointer variable, in this case the value for the local variables from the displayTimeSerial()
function. As a value they get the time stored in the DS3231 time registers converted back to
decimal.

In the displayTimeSerial() function, the local variables are created, their addresses are34.
given to the readRTCTime() function using the referencing operator & and then their results
are printed to the serial monitor

4.3 Results

When uploading the sketch to the Arduino after connecting it according to the setup, the time of the
module is set to Friday, 24th of July 2020, 10:15:00 which can be checked by calling the
displaySerialTime() function. The alarm register is set to 12:30:00 and day/date 12 is chosen.
Here it only makes sense if the alarm is not configured to match the days because a week does not
have 12 days.

In the example the setting ALARM_ONCE_PER_SECOND is chosen which means that non of the alarm
registers are matched to the time registers, it just gives a signal every second which can be seen by
the LED switching on and off in 1 second intervals.

The 1 second intervals are of course only chosen to check whether the alarm works properly. As said,
the ESP32 is to wake up once an hour, take measurements, transmit the data and go back to sleep
afterwards. Therefore, for the final application, the setting ALARM_SECONDS_MINUTES_MATCH will be
chosen. The minutes and seconds from the alarm register match exactly once per hour, so the alarm
rate is correct.

Furthermore, the time in the alarm register will be set to 0 minutes and 0 seconds, such that the
interrupt occurs with the beginning of every new hour, if the time registers are configured correctly.

After programming the alarm and time registers, most of the code will not be needed anymore and
can be left out of the final sketch. The ESP32 will only need the I2C library, an interrupt service
routine to wake it up, and the clearAlarm1() function to reset the alarm flag.

Back to the top ⤴

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:
https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

Last update: 2021/08/24 17:35

javascript:self.scrollTo(0,0)
https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=amc2020:group_n:ds3231rtc

	DS3231 Real Time Clock
	1. About the Module
	2 Data Transmission and Working Principle
	2.1 I2C
	2.2 Registers

	3 Technical Specifications and Setup
	4. Programming the DS3231
	4.1 The Code
	4.2 The Code Explained
	4.3 Results

