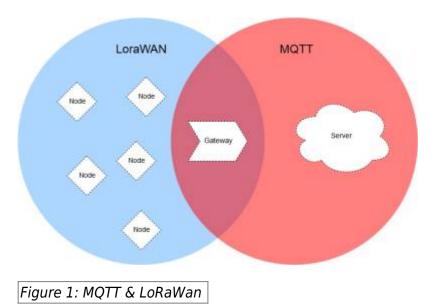
Environmental Monitoring Research Project 2021

• Intro to Tasmota, IoT, and NIG (NIG: Node-RED, InfluxDB, Grafana)

• More on **Tasmota** with WEMOS D1 Mini (ESP8266)

Student Pages


1. Problem description

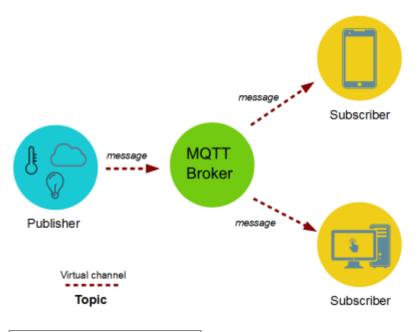
The city of Moers has bought a lot of new trash bins. In order to be able to monitor the filling level of these trash bins, the trash bins have to be equipped with appropriate hardware and software. This project can be seen as a first prototype which goes through the whole process from the collection of the data to the storage and visualization of the data. We use technologies that are also known from the smart city context.

2. Methods and Tools

For our project, we have used LoRaWAN (Low-power wide-area-network), MQTT (MQ Telemetry Transport), TTN (The Things Network), and, Node-RED to efficiently transmit data between devices and the database.

Before we can describe what is LoRaWAN first we need to understand what is LoRa. LoRa is a radio modulation technique that is essentially a way of manipulating radio waves to encode information using a chirped (chirp spread spectrum technology), multi-symbol format. LoRa as a term can also refer to the systems that support this modulation technique or the communication network that IoT applications use.

The main advantages of LoRa are its long-range capability and its affordability. A typical use case for LoRa is in smart cities, where low-powered and inexpensive internet of things devices (typically sensors or monitors) spread across a large area send small packets of data sporadically to a central administrator.LoRaWAN is a low-power, wide-area networking protocol built on top of the LoRa radio modulation technique. It wirelessly connects devices to the internet and manages communication between end-node devices and network gateways. The usage of LoRaWAN in industrial spaces and smart cities is growing because it is an affordable long-range, bi-directional communication protocol with very low power consumption — devices can run for ten years on a small battery. It uses the unlicensed ISM (Industrial, Scientific, Medical) radio bands for network deployments.


An end device can connect to a network with LoRaWAN in two ways:

Over-the-air Activation (OTAA): A device has to establish a network key and an application session key to connect with the network. Activation by Personalization (ABP): A device is hardcoded with keys needed to communicate with the network, making for a less secure but easier connection. In our project OTAA is used for the activation of the end device. Before OTAA can be used the end device needs to store its DevEUI, AppEUI and Appkey. The AppEUI is required by the network server which is storing the AppEUI of the end device. The AppEUI is used as a unique indentifier for the application server. The AppKey is responsible for the integrity of the message by generating the Message Integrity Code (MIC). AppKey is also stored by the network server. Using MIC a join-request is sent to the network server. The message contains the DevEUI, AppEUI and the DevNonce. DevNonce is a randomly generated number. After that the network server receives the message it checks whether the DevNonce has been used before. The network server uses its stored AppKey to generate its own MIC. If both MICs are the same then the end device is authenticated by the network server and it generates the two session keys, NwkSKey and AppSkey. Then the end device gets its join-accept message from the network server. By using the AppKey and the AppNonce which is part of every joint-accept message the end device can derive the NwkSKey and AppSkey. Besides the two session keys, DevAddr is also stored in the end device. It was created by the network server to identify the device within the network.

It is not necessary to go into all the details of Lorawan. However, to better understand this project it is useful to have an understanding of uplink and downlink messages. Uplink messages are messages sent from the device to the network server, which obtains the message through an appropriate gateway. From the network server, the message is forwarded to the correct application server. Downlink messages work the other way around in terms of information flow. The network server forwards a message from an application server to a device via a gateway.

MQTT on the other hand is a lightweight, publish-subscribe network protocol that transports messages between devices. The MQTT protocol defines two types of network entities: a message broker and a number of clients. An MQTT broker is a server that receives all messages from the clients and then routes the messages to the appropriate destination clients. An MQTT client is any device (from a microcontroller up to a fully-fledged server) that runs an MQTT library and connects to an MQTT broker over a network.

Information is organized in a hierarchy of topics. When a publisher has a new item of data to distribute, it sends a control message with the data to the connected broker. The broker then distributes the information to any clients that have subscribed to that topic. The publisher does not need to have any data on the number of locations of subscribers, and subscribers, in turn, do not have to be configured with any data about the publishers.

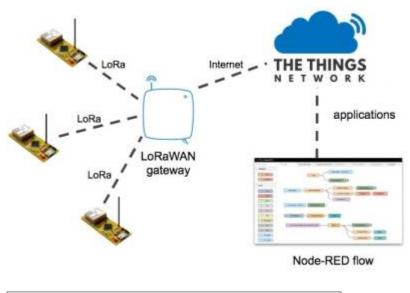
Figure 2: Structure of MQTT

If a broker receives a message on a topic for which there are no current subscribers, the broker discards the message unless the publisher of the message designated the message as a retained message. A retained message is a normal MQTT message with the retained flag set to true. The broker stores the last retained message and the corresponding QoS for the selected topic. Each client that subscribes to a topic pattern that matches the topic of the retained message receives the retained message immediately after they subscribe. The broker stores only one retained message per topic. This allows new subscribers to a topic to receive the most current value rather than waiting for the next update from a publisher.

When a publishing client first connects to the broker, it can set up a default message to be sent to subscribers if the broker detects that the publishing client has unexpectedly disconnected from the broker.

Clients only interact with a broker, but a system may contain several broker servers that exchange data based on their current subscribers' topics.

A minimal MQTT control message can be as little as two bytes of data. A control message can carry nearly 256 megabytes of data if needed. There are fourteen defined message types used to connect and disconnect a client from a broker, to publish data, to acknowledge receipt of data, and to supervise the connection between client and server.


MQTT relies on the TCP protocol for data transmission. A variant, MQTT-SN, is used over other transports such as UDP or Bluetooth.

MQTT sends connection credentials in plain text format and does not include any measures for security or authentication. This can be provided by using TLS to encrypt and protect the transferred information against interception, modification, or forgery.

The Things Network, commonly known as TTN, is an open-source infrastructure aiming at providing a free LoRaWAN network cover. This project is developed by a growing community across the world and is based on voluntary contributions to the project. Their website presents different guides to allow people to deploy gateways in their city to grow the network. These antennas provide both long-range coverage with LoRa and short-range with Bluetooth 4.2. Thanks to the open-source developments on

the source code and on the infrastructure, their coverage is already quite good in big cities and it is spreading in smaller ones.

The Things Network uses MQTT to publish device activations and messages but also allows you to publish a message for a specific device in response.

Figure 3: Integration of the relevant technologies

Node-RED is a programming tool for wiring together hardware devices, APIs and online services. It provides a browser-based editor that makes it easy to wire together flows using the wide range of nodes in the palette that can be deployed to its runtime in a single-click. The light-weight runtime is built on Node.js, taking full advantage of its event-driven, non-blocking model. This makes it ideal to run at the edge of the network on low-cost hardware such as the Raspberry Pi as well as in the cloud.

With over 225,000 modules in Node's package repository, it is easy to extend the range of palette nodes to add new capabilities.

-C Node-RED							
9, filter nodes	4 Hav1			Flow 6	Flaw 7	SAP RPO	+
vestch		- f Change D		teologyon -		_	
 Next rest request 	t Stor			Takes of MAPA			
enetation 👘	C + tres	amp - MARA		ad table	5		9 - 0
~ sopRFC	tres	ana 0-0 250x		Felds of MARA	Node-I	RED	
cel cel	tres	arap - f te	J	6	ioue i		
 dashboard 	catch (fo		mpf.vros 🗌				

Figure 4: Node-Red

Node-RED consists of a Node.js based runtime that you point a web browser at to access the flow editor. Within the browser you create your application by dragging nodes from your palette into a workspace and start to wire them together. With a single click, the application is deployed back to the runtime where it is run. The palette of nodes can be easily extended by installing new nodes created by the community and the flows you create can be easily shared as JSON files.

3. Concept

The entire technical stack that is used consists of different layers. On the one hand, we have the microcontroller and the Lora module and the antenna, which are used to forward measurement data. By means of Loawan, these data arrive as uplink messages in the ttn. There, the content of the uplink message is communicated to Node-Red using MQTT. Here, the forwarded uplink message becomes a "msg" that is usual for Node-Red. This is processed with the appropriate nodes and the extracted data is stored in the last step in Node-Red in Postgresql. The data serves as the basis for the visualization in Dash Plotly. Technically we use as microcontroller development board the adafruit feather M0 and two sensors to measure the temperature and distance. This also contains a lora module which works via SPI with the microcontroller and also a corresponding antenna for data transfer. Via IC2 the microcontroller gets the measurement data from the distance sensor VL53L1X.

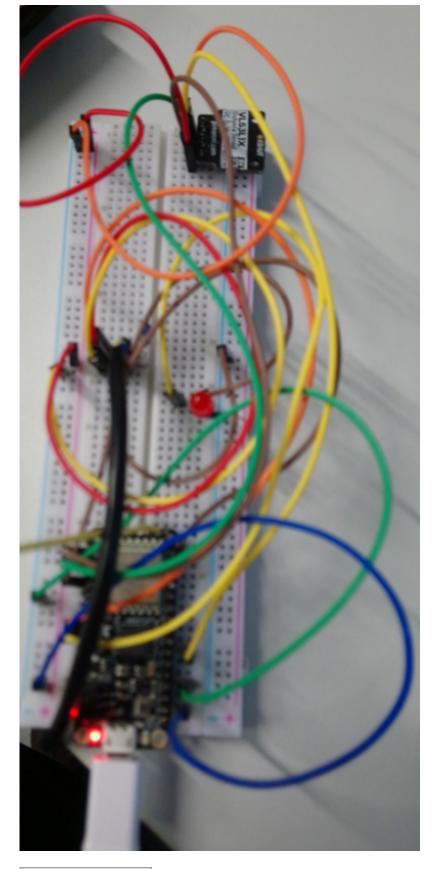


Figure 5: Hardware

4. Implementation

4.1 Prototype and data transfer

4.1.1 TTN

After you have logged in to ttn, you have to click on the "Applications" section. Then you will be redirected and all registered devices will be listed. To register a new device, click on "Add Application".

Uverview	Applications 📑 Gateways 🕮 0	irganizations	
	Applications (2)		Q. Search by ID + Add application
	10 0	Name \$	Description
	testfirstsensor	test1	
	testing-temp	Temperature Testing	
Figure 6	5: Add application in	ttn	

Then you can define an ID and name for the application and create the application. It should be noted that the ID must not be an ID that is already assigned and must contain only numbers, lowercase letters and dashes.

Application ID *	
11111	
Application name	
mySensor	
Description	
Description for my new application	
Optional application description; can also be used to save notes about th	e application
Create application	

Figure 7: Add application (details)

Add a well action

In the next step, a device can be assigned to the application by clicking "Add end Device". The settings must be entered manually. Ttn automatically assigns an end device id. DevEUI and AppEUI have to be generated. The AppEUI is able to identify the owner of the end device. The DevEUI is used to identify the end device once. In the frequency plan the recommended frequency for Euroe should be chosen. The other parameters for the lorawan version and the regional parameter setting can be found in the datasheet of the used microcontroller.

HSRW EOLab Wiki - https://wiki.eolab.de/

Register end device
From The LoRaWAN Device Repository Manually
Frequency plan 🗇 *
Europe 863-870 MHz (SF12 for RX2)
LoRaWAN version ⑦*
MAC V1.0.2
Regional Parameters version ②*
PHY V1.0.2 REV B
Show advanced activation, LoRaWAN class and cluster settings ~
DevEUI ⑦ *
70 B3 D5 7E D0 04 D4 F7
AppEUI ⑦*
00 00 00 00 00 00 00 Fill with zeros
AppKey ⑦*
F5 76 42 07 34 05 1A 67 36 14 97 7E 86 F0 1D 88 🗘 Generate
End device ID ⑦*
eui-70b3d57ed004d4f7
This value is automatically prefilled using the DevEUI
After registration
View registered end device
 Register another end device of this type
Register end device

Figure 8: Register device

After the end device is created it can be clicked by user. Then a new page opens which contains all parameters for the end device. Here the data formats for the keys DevEui, AppEUI and AppKey can be formatted. It is important to note that the DevEUI and AppEUI keys are entered in the Little Endian Vormat in the script. AppKey is needed in the Big Endian Vormat. This works by pressing "Toggle array formatting" next to the keys. The symbol has been outlined in red in the next figure.

Activation information		
AppEUI	0x00, 0x00, 0x00, 0x00, 0x00,	⊙ msb 🚓 <> 📳
DevEUI	0x70, 0xB3, 0xD5, 0x7E, 0xD0,	0 msb ₽ (> 盾
Root key ID	n/a	
АррКеу	0xF5, 0x76, 0x42, 0x07, 0x3	msb 🕶 🗘 🖺 🗞

Figure 9: Change data format

4.1.2 relevant libraries and sketches

The following libraries should be installed under **Tools** → **Manage Libraries**:

- MCCI LoRaWan LMIC library
- SparkFun VL53L1X 4m Laser Distance Sensor
- DallasTemperature

"MCCI LoRaWan LMIC library" is used for the transmission of the measurements to the ttn. "SparkFun VL53L1X 4m Laser Distance Sensor" is used for the programming of the distance sensor and "DallasTemperature" is used for the programming of the temperature sensor.

The final sketch that was used is just a mix of different example sketches. The following example sketches were used as a inspiration for the final sketch:

- ttn-otaa (MCCI LoRaWan LMIC library)
- Example1_ReadDistance (SparkFun VL53L1X 4m Laser Distance Sensor)
- simple (DallasTemperature)

How to open an example is illustrated in the next figure.

Consect Cut+W Save Cut+S Save Cut+S Save Cut+Shift+S Page Setup Cut+Shift+S Page Setup Cut+Comma Gal payloc So pc); Cuit fmmat Gal payloc So pc); So pc); </th <th>New Open Open Rece Sketchbool</th> <th></th> <th></th> <th></th>	New Open Open Rece Sketchbool			
OBUSE Curve Save Curves OBUSE Save Aa Curves Page Setup Curves Preferences Curves Curves Examples for any board Addruik Cleauk Playsound Bidge Out Curves Curves Ethernet Gel payloc Gel payloc Gel payloc Gel payloc Gel payloc Sor So To int mj Serial Temples for Addruit Festher M0 Addruik Targe DMA Library So To Serial Curves Sono To Serial Curves Sono Serial Curves Serial Sono Serial Sono <th></th> <th>1</th> <th></th> <th><pre>// Send the command t</pre></th>		1		<pre>// Send the command t</pre>
Save A Cirl-Shirt-P Cirl-Shirt-P Page Setup Cirl-Shirt-P DiStateKit_BadcKit Print Cirl-P Cirl-Comma Quit Cirl-Comma Bidge To int my Secper > <<< 8) + payload[3] 71 Serial Temboo ! 72 Serial Temples for Addruit Feather M0 73 // Pre Examples for Addruit Feather M0 74 LMIC_s Addruit Regue DMA Library 75 Serial Quitaki Busto 76 } USB-Base 81 //delay Wire 82 Serva Serva 83 // Next Addruit Busto 84 <td< th=""><th></th><th></th><th></th><th>/Index(0);</th></td<>				/Index(0);
Page Setup Cutrishit-P Pind Cutrish Pind Cutrish Pind Cutrish Quit Cutrish Quit Cutrish Quit Cutrish Quit Cutrish Quit Cutrish G8 payloa G9 payloa G9 payloa G0 S0 70 int my Secrial Temboo I 72 Secrial 73 // Pre Secrial RETRED 74 LMIC_: Adafuit Taylos Library 74 LMIC_: Adafuit Taylos Library 75 Secrial 76 J 77 else SAMD_AnalogCorrection Solu 79 Secrial SPI Serve S1 Job Program S2 Samples from Cutrom Libraries S4 Adafuit Busio S4 Adafuit Busio S2 Serve S1 Adafuit Busio S4 Adafuit Busio <				,D_C)//&& distanceSer
Print Cutile Print Cutile Preferences Cutile Quit Cutile Quit Cutile Quit Cutile Ges payloa Ges p			11.ArduinoISP	>
Preferences Cut+Comma Quit Cut+Q Bidge Bidge Cont Cut+Q Bidge Bidge Cont Cut+Q Bidge Debugstor Cont Cut+Q Bidge Debugstor Cont Cut+Q Bidge Debugstor Cont Cut+Q Cont Cut+Q Cont Secial Cont Secial Cont Tembool Cont Cont Cont Secial Cont Cont Cont <t< th=""><th></th><th></th><th>Examples for any board</th><th>ling is: ");</th></t<>			Examples for any board	ling is: ");
Quit Chri-Q Ethernet 2668 payloc Firmata 269 payloc S0 270 int my Stepper 271 Serial Temboo I 272 Serial RETRED 273 // Pre Examples for Addruit Feather M0 274 LMIC_s Addruit TayUSB Library 275 Serial Q_Tests 276 J US 277 else SAMD_AnalogCorrection 278 { SU 279 Serial Servo 281 //delay Vire 282 // Next Addruit BusID 283 // Next Addruit WissultX 284 digitali Addruit WissultX 285 // Temp MCCLLoRaWAN Library 286 //Temp Vire 287 DalasTemperature 288 Vire 283 // Examples from Custom Ubraries 284 digitali 285 // Temp 286 // Temp </th <th></th> <th></th> <th>Adafruit Circuit Playground</th> <th>></th>			Adafruit Circuit Playground	>
Can Can Can Firmata > <	Preferences	Ctrl+Comma	-	>
268 paylos jujudCopytel pc); 269 paylos S0 j); 270 int my Stepper) << 8) + payload[3]	Quit	Ctrl+Q		>
269 paylod g0 g0 g0 g0 270 int m3 Stepper gd c< 8) + payload[3]	268	payloa)
271 Serial Temboo Tempoo 272 Serial RETRED addruit Feather M0 273 // Pre Examples for Addruit Feather M0 smission at the next 274 LMIC_: Addruit TenyUSB Library Lzeof (payload), 0); 275 Serial C_Tests ad")); 276 J US adfruit Zeo DMA Library 276 J US adfruit Zeo TMA Library 276 J US adfruit Zeo DMA Library 277 else SAMD_AnalogCorrection ad")); 278 { Servo bot read temperature 279 Serial SPI bot read temperature 281 //delay Wire bot read temperature 282 Examples from Custom Libraries Adafruit Busito // turn the LED 283 // Next Adafruit VLSLIX // turn the LED 284 digitall Adafruit VLSLIX m Laser Distance Senor // turn the LED 286 //Temp SpikFun VLSLIX m Laser Distance Senor Example1_ReadDistance 287 OneWire V	269	payloa		, C) ;
272 Serial RETRED > 273 // Pre Examples for Adafnuit Feather M0 smission at the next 274 LMIC_: Adafnuit TenyUSB Library Lzeof (payload), 0); 275 Serial C_Tests ad")); 276 J US J 277 else SAMD_AnalogCorrection J 278 Serial Servo J 279 Serial Servo J 280 J USBHost J 281 //delay Wire J 282 Examples from Custom Libraries Adafnuit RusiD Adafnuit RusiD 283 // Next Adafnuit RusiD Adafnuit VISBLIX // turn the LED 284 digitall Adafnuit VISBLIX // turn the LED 285 J/Temp MCCLArduino LoRaWAN Library J Kadfnuit Ruser Distance Sensor Example1_ReadDistance 286 //Temp SpatkFun VLSSLIX 4m Laser Distance Sensor Example1_ReadDistance Example3_StatuAndRate 287 CituBas Sintu AngPata \Local\\Arduk SpatkFun VLSSLIX 4m Laser Distance Sensor	270	int my	Stepper	,) << 8) + payload[3];
272 Serial Financial Serial 273 // Pre Examples for Addfruit Feather M0 smission at the next 274 LMIC_: Addfruit TinyUSB Library izeof (payload), 0); 275 Serial C_Tents pd")); 276 J US pd")); 277 else SAMD_AnalogCorrection pd")); 278 Serial SU pd")); 279 Serial SU pd")); 280 J USBHoat pd")); 281 //delay Wire pd"); 282 Examples from Custom Libraries Adafruit NUSBLIX pd"); 283 // Next Adafruit VISBLIX pd"); function LoRaWAN Library 284 digitality Adafruit VISBLIX pd"); funct the LED 285 MCCLARAWAN LMIC Ibrary pd"; function LoRaWAN Library pd"; 286 //Temp Wite pd"; function Loral VISBLIX Am Laser Distance Sensor Example1_RaadDistance 287 C:\USers\\Sinan\\AppData\\Local\\Arduity Local\\Arduity function Local\\Arduity fu	271	Serial	Temboo	>ed Temperature is: ")
274 LMIC_: Addfuit TinyUSB Library izeof (payload), 0); 275 Serial C_Tests od")); 276 J Z5 od")); 277 else SAMD_AnalogCorrection od")); 278 Serial SUU od")); 279 Serial SPI ot 280 J USBHoat ot 281 //delay Wire ot 282 Examples from Custom Libraries Adafruit BusiO Adafruit BusiO 283 // Next Adafruit VLSSLIX // turn the LED 284 digitall Adafruit VLSSLIX // turn the LED 285 J//Temp MCCLArduino LoRaWAN Library // turn the LED 286 //Temp v MCCLARdwWAN Library Example1_ReadDistance 287 OneWire OneWire oneWire 287 SpaikFun VLSSLIX Am Laser Distance Sensor Example1_ReadDistance 287 OneWire C Example3_StatuaAndRate 287 C:\Users\\Sinan\\AppData\\Local\\Arduike Example4_StintermeasurementPeriod 287	272	Serial	RETIRED	>
Addituit Zero DMA Library Addituit Zero DMA Library addituit Zero DMA Library 275 Serial C_Tests addituit Zero DMA Library add")); 276 } US addituit Zero DMA Library add")); 277 else SAMD_AnalogCorrection add")); add")); 278 { Serve bot read temperature 279 Serial Serve bot read temperature 280 } USBHost bot read temperature 281 //delay Wire bot read temperature 282 Examples from Custom Libraries Adafruit RustO Adafruit VLSELIX 283 // Next Adafruit VLSELIX // turn the LED 284 digitall Adafruit VLSELIX // turn the LED 285 DallesTemperature MCCLARdwino LoRaWAN Library Adafruit Rust Distance Sensor Example1_ReadDistance 286 //Temp SparkFun VLSELIX 4m Laser Distance Sensor Example1_ReadDistance Example3_StatuAnaRate 287 Sintan \AppData \Local\\Ardu Erample4_StintaremeasurementPeriod Example5_LCODemo	273	// Pre	Examples for Adafruit Feather M0	smission at the next
275 Serial CLTests Bd")); 276 J US J 277 else SAMD_AnalogCorrection J 278 { Serial SU 279 Serial Servo J 280 J USBHost J 281 //delay Wire J 282 Examples from Custom Libraries Adafruit BusiO 283 // Next Adafruit BusiO // turn the LED 284 digitaliv Adafruit VLSBLIX // turn the LED J 286 //Temp v MCCI Arduino LoRaWAN Library MCCI LoRaWAN LMC Horay J 287 OneWire J Example1_ReadDistance Example3_StatuAndRute 287 VISSTS/Sinan/\AppData/\Local/\Arduike Example3_StatuAndRute Example4_SetintermeasurementPeriod 287 VISSTS SintermeasurementPeriod Example5_LCODemo	274	LMIC_:		<pre>`izeof(payload), 0);</pre>
276 } 25 > 277 else SAMD_AnalogCorrection > 278 { SDU > 279 Serial Servo > 280 } USBHost > 281 //delay Wire > 282 Examples from Custom Libraries Adafruit BusIO 283 // Next Adafruit BusIO 284 digitaliv Adafruit VLS3LIX > // turn the LED 285 DallesTemperature > 286 //Temp V SpaikFun VLS3LIX 4m Laser Distance Sensor Examplet_ReadDistance 287 OneWire > Examplet_StatuAndRute 287 Sinan\\AppData\\Local\\Arduk Examplet_StatuAndRute Exampled_StatuAndRute 287 VUSers\\Sinan\\AppData\\Local\\Arduk Exampled_StatuAndRute Exampled_StatuAndRute 287 V Vets SintermentPeriod Exampled_StatuAndRute	275	Serial		(ed"));
277 else SAMD_AnalogCorrection 278 { SDU 279 Serial Servo 280 } USBHoat 281 //delay Wire 282 Examples from Custom Libraries 283 // Next Adafruit Busto 284 digitality Adafruit VLS3LIX 285 Dellas Temperature 286 //Temp 287 OneWire 288 //Temp v MCCLARAWAN LMIC Ibrary 287 SparkFun VLS3LIX 4m Laser Distance Sensor 288 SparkFun VLS3LIX 4m Laser Distance Sensor 287 V 288 SparkFun VLS3LIX 4m Laser Distance Sensor 289 V 287 V 287 V 288 V/Temp v 289 V 287 V 288 V/Temp v 289 V 289 V 289 V 280 V 280 V 280	276	}		
279 Serial Servo pot read temperature 280 J USBHoat pot read temperature 281 //delay Wire pot read temperature 282 Examples from Custom Libraries Adafruit BusiO > 283 // Next Adafruit BusiO > 284 digitalit Adafruit VLS3LIX > // turn the LED 285 DallesTemperature > // turn the LED 286 //Temp MCCI LoRAWAN Library > 287 OneWire > Example1_ReadDistance 287 SparkFun VLS3LIX 4m Laser Distance Sensor Example1_ReadDistance Example2_SchDistanceMode 287 Sinan \ AppData \ Local \ Arduit Ture Example4_StatusAndRate Example4_StatusAndRate 287 Sinters Sinan \ AppData \ Local \ Arduit Example5_LCODemo Example5_LCODemo	277	else		>
279 Serial SPI Dot read temperature 280 JUSBHost Dusbhost Dusbhost Dusbhost 281 //delay Wire Dusbhost Dusbhost Dusbhost 282 Examples from Custom Libraries Adafruit BusiD COMPLETE event. 283 // Next Adafruit BusiD // turn the LED 284 digitali Adafruit VLSBLIX // turn the LED 285 DallasTemperature MCCI LoRAWAN Library // turn the LED 286 //Temp MCCI LoRAWAN LMIC Ibrary DoeWire 287 OneWire Despective Distance Sensor Example1_ReadDistance 287 SparkFun VLSBLIX Am Laser Distance Sensor Example1_ReadDistance 287 SparkFun VLSBLIX Am Laser Distance Sensor Example1_ReadDistance 287 SparkFun VLSBLIX Am Laser Distance Sensor Example1_ReadDistance 287 Sintan \AppData \Local\\Ardu Example4_StatuAndRate 288 Sintan \AppData \Local\\Ardu Example5_LCODemo	278	(SDU	>
SPI SPI 280 JUSEHeat 281 //delay Wire Sumples from Custom Libraries 283 // Next Adafruit BusiO COMPLETE event. 284 digitalv 285 DallesTemperature 286 //Temp v MCCLARDWAN LMIC library 287 OneWire SparkFun VLSBLTX 4m Laser Distance Sensor C:\\Users\\Sinan\\AppData\\Local\\Arduk ketch uses 51672 bytes (19%) of progra	279	Serial		'hot read temperature
281 //delay Wire 282 Wire 283 // Next Adafruit BusiO > 284 digitali Adafruit VISILX > 285 DallesTemperature > 286 //Temp v MCCILeR#WAN Library > 287 OneWire > 287 SparkFun VLS3LIX 4m Laser Distance Sensor Example1_ReadDistance 287 V SparkFun VLS3LIX 4m Laser Distance Sensor Example1_ReadDistance 287 V V Example3_StatusAndRate Example4_SetIntermeasurementPeriod 287 V V V Example5_LCODemo Example5_LCODemo	280	}		
282 Examples from Custom Libraries 283 // Next Adafruit BusiO > 284 digitali 285 DallasTemperature 286 // Temp 287 MCCI LoRaWAN Library 287 OneWire SparkFun VLSBLTX 4m Laser Distance Sensor Example1_ReadDistance C:\\USers\\Sinan\\AppData\\Local\\Ardukee ketch uses 51672 bytes (19%)	281	, //delav		2
Examples from Custom Libraries 283 // Next Addruit BusiO > 284 digitali Adafruit VLSSLIX > 285 DallasTemperature 286 //Temp v MCCILeRaWAN LMIC library > 0neWire > SparkFun VLSSLIX 4m Laser Distance Sensor Example1_ReadDistance C:\\Users\\Sinan\\AppData\\Local\\Ardu Example5_titnermeasuremtPeriod ketch uses 51672 bytes (19%) of progra		,,,		-
284 digitali Adafuik VLS3LIX // turn the LED 285 DallarTemperature // turn the LED 286 //Temp v MCCI LeRaWAN Library // 287 OneWire // Example1_ReadDistance 288 SparkFun VLS3LIX 4m Laser Distance Sensor Example1_ReadDistance 287 V V Example1_ReadDistance 288 V V V Example1_ReadDistance 287 V V V Example1_ReadDistance 288 V V V Example2_SetDistanceMode 289 V V V Example3_StatusAndRate 280 StatusAndRate Example5_LCDDemo Example5_LCDDemo		// Next		COMPLETE event
285 //Temp v DallasTemperature > 286 //Temp v MCCI Arduino LoRaWAN Library > 287 OneWire > > one compling SparkFun VLS3LIX 4m Laser Distance Sensor Example1_ReadDistance C:\\Users\\Sinan\\AppData\\Local\\Arduk Example3_StatusAndRate Example4_StintermeasurementPeriod ketch uses 51672 bytes (19%) of progra Example5_LCDDemo				-
286 //Temp v MCCl Arduino LoRaWAN Library MCCl LoRaWAN LMIC Ibrary OneWire > 287 SparkFun VLS3LIX 4m Laser Distance Sensor OneWire Example1_ReadDistance cone compling V Example2_SetDistanceMode C:\\Users\\Sinan\\AppData\\Local\\Ardurketc Example3_StatusAndRate Example4_SetIntermeasurementPeriod Example5_LCDDemo		argrear		> // carn one heb o
287 MCClLoRaWAN LMIC Horsey OneWire > SparkFun VLS3L1X 4m Laser Distance Sensor Example1_ReadDistance Example2_SetDistanceMode Example2_SetDistanceMode C:\\Users\\Sinan\\AppData\\Local\\Ardu Example3_StatuAndRate ketch uses 51672 bytes (19%) of progra Example5_LCODemo		//Tomp	MCCI Arduino LoRaWAN Library	>
one compling SparkFun VLS3L1X 4m Laser Distance Sensor Example1_ReadDistance SparkFun VLS3L1X 4m Laser Distance Sensor Example1_ReadDistance C:\\Users\\Sinan\\AppData\\Local\\Ardu Example3_StatusAndRute ketch uses 51672 bytes (19%) of progra Example5_LCDDemo		//iemp v	,	>
Sene Kompling Example2_SetDistanceMode Example3_StatusAndRute Example4_SetDistanceMode Example3_StatusAndRute Example3_StatusAndRute Example4_SetDistanceMode Example3_StatusAndRute Example4_SetDistanceMode 	.07			>
C:\\Users\\Sinan\\AppData\\Local\\Ardu Example3_StatusAndRate Example4_StintermeasurementPeriod Example5_LCDDemo	one compiling		SparkFun VL53L1X 4m Laser Distance Ser	
ketch uses 51672 bytes (19%) of progra Examples_LCDDemo		LOTURY III		
ketch uses 51672 bytes (19%) of progra ExampleS_LCODemo				Example4 SetIntermeasurementPeriod
Example6_ArduinoPlotterOutput	ketch ı	13es 51672	bytes (19%) of pro	gra
				Example6_ArduinoPlotterOutput

Figure 10: How to open the examples

4.1.3 Embedded programming

At the beginning of the script the previously defined keys must be specified, because without these keys no authentication is possible. OTAA was explained in detail at the beginning of the documentation, so parts of the code that deal with activation are only briefly mentioned.

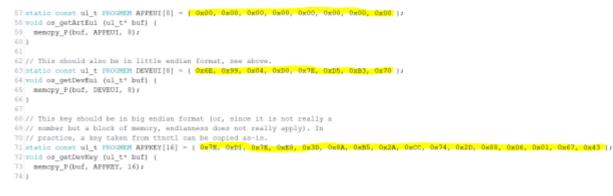


Figure 11: Implementation of the keys

Most of the important things happen in the do_send, onEvent and setup functions. "setup" is used to test wheather the distance sensor is available and initialize LMIC.

```
290 void setup() {
291
292
     Wire.begin();
293
294
     Serial.begin(9600);//115200
295
     Serial.println("VL53L1X Qwiic Test");
296
297
     if (distanceSensor.begin() != 0) //Begin returns 0 on a good init
298
     {
299
       Serial.println("Sensor failed to begin. Please check wiring. Freezing...");
300
       while (1)
301
         ;
302
     }
    Serial.println("Sensor online!");
303
304
    // LMIC init
305
306
     os init();
     // Reset the MAC state. Session and pending data transfers will be discarded.
308 LMIC_reset();
309 //LMIC setLinkCheckMode(0);
310
     //LMIC.dn2Dr = DR SF9;
311 LMIC setClockError(MAX CLOCK ERROR * 1 / 100);
312
     // Start job (sending automatically starts OTAA too)
313 do_send(&sendjob);
314 }
```

Figure 12: setup function

The do_send function is the most relevant function because the data for transmission in ttn are prepared there. All measured values are received there and prepared as bytes for sending. If no transmission is currently running, distance data is retrieved and stored as byte.

```
void do send(osjob t* j) {
 //digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 // Check if there is not a current TX/RX job running
 if (LMIC.opmode & OP TXRXPEND) {
   Serial.println(F("OP_TXRXPEND, not sending"));
  } else {
   //distance sensor
   distanceSensor.startRanging(); //Write configuration bytes to initiate measurement
   while (!distanceSensor.checkForDataReady())
     delay(1);
    ŀ
    int distance = distanceSensor.getDistance(); //Get the result of the measurement from the sensor
   distanceSensor.clearInterrupt();
   distanceSensor.stopRanging();
   Serial.print("Distance(mm): ");
   Serial.print(distance);
    float distanceInches = distance * 0.0393701;
   float distanceFeet = distanceInches / 12.0;
   Serial.print("\tDistance(ft): ");
   Serial.print(distanceFeet, 2);
    //added
   byte payload[4];
   payload[0] = highByte(distance);
   payload[1] - lowByte(distance);
```

Figure 13: get distance and store as byte

The same principal is applied to the temperature data. Here you have to take care that the temperature is integer, therefore the temperature is multiplied by 100.

```
:60
       sensors.requestTemperatures(); // Send the command to get temperatures
       float tempC = sensors.getTempCByIndex(0);
61
       if (tempC != DEVICE DISCONNECTED C )//&& distanceSensor.begin() == 0
62
63
       {
         Serial.print("Temperature reading is: ");
64
         Serial.println(tempC);
65
         int tempTempC = tempC * 100;
66
67
         //byte payload[2];
68
         payload[2] = highByte(tempTempC);
69
         payload[3] = lowByte(tempTempC);
70
         int myVal = ((int)(payload[2]) << 8) + payload[3];</pre>
         Serial.print("Decoded & Encoded Temperature is: ");
71
72
         Serial.println(myVal);
73
         // Prepare upstream data transmission at the next possible time.
74
         LMIC setTxData2(1, payload, sizeof(payload), 0);
         Serial.println(F("Packet queued"));
75
76
       }
```

Figure 14: get temperature and store as byte

"onEvent" reacts on different events that can occur. For example it is used to handle events that are relevant for the authentication and activation of the device.

After the data has entered the ttn via an uplink message, the high and low bytes must be decoded so that both the high byte and the low byte are in the correct position. Furthermore the temperature has to be calculated again to a decimal number by dividing by 100.

	End devices	↑ 249 🔸 57 🔹 Last activity 12 hours ago 🛞	
a.	Live data	Overview Live data Messaging Location Payload formatters Claiming	General settings
0	Payload formatters		
t	Integrations	Uplink Downlink	
*	Collaborators	Setup	Test
07	API keys	Formatter type *	Byte payload
۵	General settings	Javascript 🗸 🗸	No test resu
		<pre>1 function decodeuplak(input) [5] 2 let distance = ((input.bytes[0] << 8) + input.bytes[1]); 3 let temp = ((input.bytes[2] << 8) + input.bytes[3])/180; 4 zeturn { 5 bytes: input.bytes, 6 dats: { 7 distanceme: distance, 8 tempon: temp 9 }, 9 warnings: [), 11 errors: [] 12]; 13 } </pre>	

Figure 15: Decoding

The incoming data is then displayed in the "Live data" section.

2024/05/17 08:10 13/39 Environmental Monitoring Research Project 2021

Figure 16: Select live data

The pin configuration to ensure a successful SPI communication between the microcontroller and the Lora module must be done exactly as shown in the next picture.

```
82
83 // Pin mapping
84 const lmic pinmap lmic pins = {
85 .nss = 8,
86 .rxtx = LMIC UNUSED PIN,
   .rst = 4,
87
   .dio = {3, 6, LMIC UNUSED PIN},
88
89 .rxtx rx active = 0,
90 .rssi cal = 8,
                                 // LBT
   .spi freq = 8000000,
91
92 };
93
```

Figure 17: Pin configuration

4.2 Implementation in Node-Red

4.2.1 "Theoretical" test with 3 gateways

The entire flow starts with an injection node which contains a payload consisting of a file which was created by TTN. The only difference is that for testing purposes several gateways were added to the file.

Node 'inject' bearb	eiten > JSON-Editor
	Abbrechen
JSON-Editor	Visueller Editor
	JSON formatieren
20	Computer 1 2212
29 *	}, "
30 -	"rx_metadata": [
31 *	i "antounu ide": (
32 -	"gateway_ids": {
33	"gateway_id": "draginogw-iotlab-006",
34	"eui": "A84041FFFF1F9D54"
35 *	
36	"time": "2022-01-19T12:14:45.122Z",
37	"timestamp": 1063755035,
38	"rssi": -58,
39	"channel_rssi": -58,
40	"snr": 9,
41	"uplink_token": "CiIKIAoUZHJhZ2lub2d3LWlvdGxhYi0wMDYSCKhAQf/,
42 -	b line line line line line line line line
43 -	
44 -	"gateway_ids": {
45	"gateway_id": "draginogw-iotlab-666",
46	"eui": "A84041FFFF1F9DDD"
47 -	},
48	"time": "2022-01-19T12:14:45.122Z",
49	"timestamp": 1063755035,
50	"rssi": -55,
51	"channel_rssi": -55,
52	"snr": 5,
53	"uplink_token": "CiIKIAo"
54 ^	b
55 -	
56 -	"gateway_ids": {
57	"gateway_id": "draginogw-iotlab-999",
58	"eui": "A84041FFFF1F9DDD"
59 *	};
60	"time": "2022-01-19T12:14:45.122Z",
61	"timestamp": 1063755035,
62	"rssi": -55, "shared part", 55
63	"channel_rssi": -55,
64	"snr": 5,
65	"uplink_token": "CiIKIAo"
66 *	
67 *	
68 -	"settings": {
69 -	
Figure 18: Test	data

The first gateway is the gateway from the original message, all other gateways and their ids were made up to test the entire flow and database. The initial injection node containing the modified json file has five connections to other nodes.

	of more_than_1_gatew split of get_connection_data_do	
t mutple_gateways	f 1_gateway	
		-
1	f transmission_data	>
	get_distance msg.payload	D
	get_temp_meas	

Figure 19: Flow for "one" gateway

The simplest case is that a message is only received from one gateway. In this case the function "1 gateway" contains all gateway and connection data.

Name 1_gateway				<i>R</i> •
Setup	Start	Funktion	Stopp	
1 2 - if(msg.payload.upli 3 4 var msg_id = "03"// 5 var gateway_id=msg.	nsgmsgid;	adata.length == 1){ ssage.rx_metadata[0].gateway_1	lds.gateway id;	Ŀ
<pre>7 var rssi = msg.pay 8 var channel_rssi = 9 var snr = msg.paylo 10 11 var bandwidth = msg 12 var spre_factor = m 13 var code_rate = msg. 14 var air_time = msg. 15 var topic = "v3/+/d 16</pre>	<pre>load.uplink_messa msg.payload.uplink ad.uplink_message .payload.uplink_m sg.payload.uplink_ g.payload.uplink_me evices/+/up"//msg d,gateway_id,gate</pre>	<pre>_message.rx_metadata[0].gatewa ge.rx_metadata[0].rsi; k_message.rx_metadata[0].chanr .rx_metadata[0].snr; essage.settings.data_rate.lorw _message.settings.data_rate.lor message.settings.coding_rate; ssage.consumed_airtime; .topic; way_eui,rssi,channel_rssi,snr,</pre>	nel_rssi; a.bandwidth; ora.spreading_factor;	e_rate,air_time,topic];

Figure 20: Function 1_gateway

These parameters are extracted individually from the payload and assigned to new variables. This happens only if the array "msg.payload.uplink.rx_metadata" has the length one, i.e. contains only one gateway. If more gateways are contained, msg is initialized with null and nothing is stored in the database. The newly set variables are stored in "msg.params". "msg.params" contains the parameters which will be used in the following postgresql-node.

more_than_1_gatew		f get_conne	ction_data_db
	f 1_gateway		
	•f transmission_data	in the second	parameter_DB
f get_distance			msg payload
get_temp_meas	postg	resq 👂	

Figure 21: Store connection data

The set parameters are the input for the insert statement within the node.

Name	store_connection_data
Server	РВ 🗸
Split results in	multiple messages
Number of rows per message	1
Query Insert :	into ta_connection values(\$1,\$2,\$3,\$4,\$5,\$6,\$7,\$8,\$9,\$10,\$11);
4	▶

Figure 22: Insert statement with the necessary parameters

This saves the previously defined values in the database in the table "ta_connection". For the postgreql node some settings must be made so that the database can be used.

Name	PB	
Connection	Security	Pool
📑 Host	 ^a_z hsrw.space 	
Port	▼ ⁰ ₉ 5432	
Se Database	▼ ^a _z emrp2021	
SSL	▼ ⊙ false ▼	
2		
Name	PB	
Connection	Security	Pool
🛔 User	 a emrp2021_master 	
Password		

Figure 23: Settings for the database

Firstly, the host and the database used must be specified. Also, the database user and the password of the database must be specified. However, it should be noted that if one postgresql node is changed then all postgresql nodes are automatically changed. The measured values for the distance and the temperature are extracted by the nodes "get_distance" and "get_temp_meas" from the payload of the initial json file.

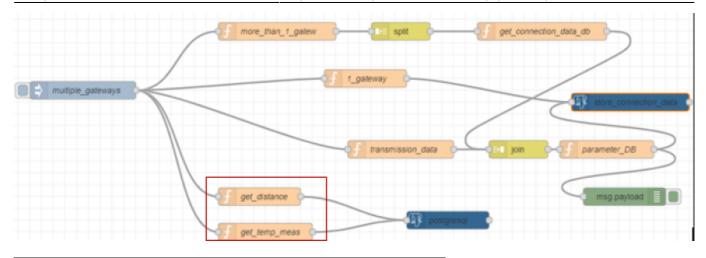


Figure 24: Functions to extract data for the measurement tables

Both functions are designed to extract data only if measured values are available, otherwise msg is set to zero.

Name	get_distance		
Ø Setup	Start	Funktion	Stopp
2 var de 3 var ti 4 var ch 5 var te 6 var ap 7 var m	<pre>v_eul = msg.payload.end_device_id me = msg.payload.uplink_messag annel = "distance"; plc = msg.toplc; p_id = msg.payload.end_device_id; asurement = msg.payload.uplink_ms nams = [dev_eul,time,channel,top</pre>	ds.dev_eui; ge.rx_metadata[0].time; s.application_ids.applicat ssage.decoded_payload.dis	stancemm;
11 12 - else(13 mg	g = mull; turn msg;		

Figure 25: Details for get_distance

Similar to the example before, the necessary parts of the payload are extracted here and set as parameters for the following query. This was illustrated for "get_distance" in the figure but the same principle can be found in "get_temp_meas". However, transferred json files that have multiple gateways are a bit more complicated. The function "more_than_1_gatew" checks if the object contains more than one gateway and initializes the payload with the object for the gateways. If not, msg is initialized with null.

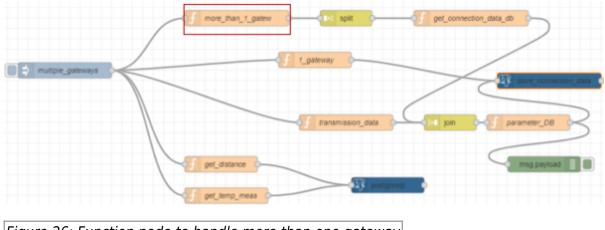


Figure 26: Function node to handle more than one gateway

2024/05/17 08	8:10 19/39	Environmental Monitoring Research Project 2021
Name	more_than_1_gatew	
Ø Setup	Start Funkt	tion Stopp
3 ms 4 return 5 ~ } 6 ~ else{ 7 ms	g.payload.uplink_message.rx_metadata.length>1){ sg.payload = msg.payload.uplink_message.rx_metada n msg; sg = null; eturn msg;	ita;

Figure 27: Details for "more_than_1_gatew"

The node "split" ensures that the payload is always split off as an array with the length one, so that, for example, an object containing 3 gateways is split three times into three payloads.

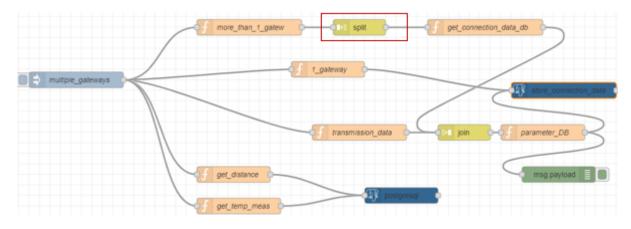


Figure 28:split node

Eigenschafter	1	¢
Aufteilung von m	sg.payload entsprechend dem Typ:	
string / buffer		
Aufteilung	▼ ^a _z /	
Als Nachrich	tenstrom behandeln (Streaming-Modus)	
array		
Aufteilung	feste Längen von 1	
object		
Sende eine Na	chricht für jedes Schlüssel/Wert-Paar	
🗆 Schlüssel ko	pieren zu	
msg.		
Name	Name	

Figure 29: Details for the split node

After that each payload is forwarded in the flow to the function "get_connection_data_db". There the relevant parts of the split objects are extracted and stored in the payload as an array. It is important that "msg.topic" is also provided with a unique value. This will be important for the next join node.

L

2024/05/17 08:10	21/39	Environmental I	Monitoring Research Project 2021
Name	get_connection_data_db		
Setup	Start	Funktion St	
2 var ga 3 var ga 4 var rs 5 var ch 6 var sn 7 8 9 msg.pa	<pre>g_id = "02"//msgmsgid; teway_id = msg.payload.gateway_id; teway_eui = msg.payload.gateway_id; si = msg.payload.rssi; annel_rssi = msg.payload.channel_r r = msg.payload.snr; yload = [msg_id,gateway_id,gateway pic = "connection"; msg;</pre>	ds.eui; rssi;	·];

Figure 30: Details for the function "get_connection_data"

In the join node, the gateways are combined with the connection data. This results in data sets with the same connection data but different gateway information. With the use of the join Node is to be considered that the individual message parts must set in each case unique msg.topics before and that with the properties of the join Node the number of the message parts is specified and also the hook "and with each following message" is set. If this is not done the join node may not be able to process more than 2 separate gateway information. All joined data will be stored as a value object.

Node 'join' bearb	eiten	
Löschen		Abbrechen Fertig
Eigenschafte	n	
Modus	Manuell	~
Verbinde jede	 msg. payload 	
und erstelle	ein Schlüssel/Wert-Objekt	~
mit dem Wert vo	n msg. topic	als Schlüssel
Senden der Nac	hricht:	
Nach einer A	nzahl von Nachrichtenteilen	2
🔽 und b	ei jeder nachfolgenden Nach	richt
Bei Zeitablau	If nach erster Nachricht von	Sekunden
Nach Nachri	cht mit msg.complete-Eigen	schaft
Name	Name	

Figure 31: Properties of the join node

Then the function "parameter_DB" is used to extract all values from the merged object. For this the msg.topics "connection" and "transmission" defined before are used.

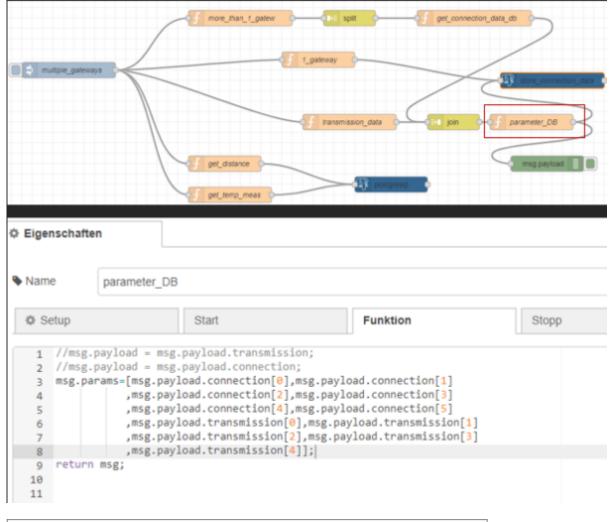
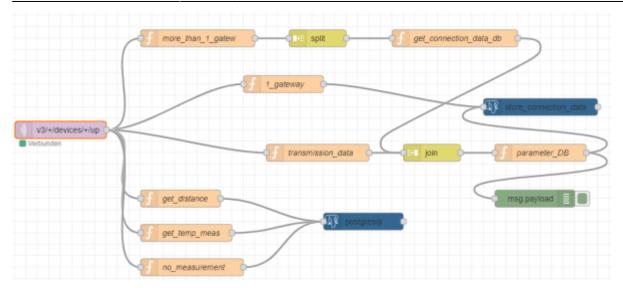
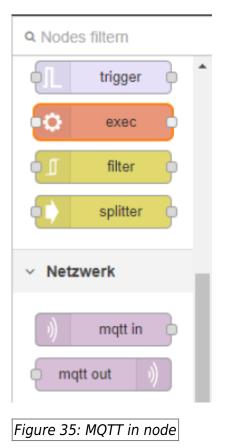


Figure 32: Parameters based on the topics connection and transmission


At the end, the defined parameters from msg.params are inserted into the insert-statement. It is important to note that the number of times the query is executed after the initial injection depends on how many gateways were split from the initial object. For example, if three gateways were split from the object then the query will also be filled three times with different parameters for the gateways.

Node 'postgresql	' bearbeiten	more_than_1_gatew	f 1_gateway	data	pet_connection_data_c	2
Löschen					Abbrechen	Fertig
Eigenschafte	n					•
Name	store_conn	ection_data				
Server 5	РВ				~	
Split results in	multiple me	ssages				
Number of rows						
per message	1					
💩 Query						
1 Insert	into ta_com	nnection valu	ues(\$1,\$2,\$	3,\$4,\$5,\$0	6,\$7,\$8,\$9,\$;10,\$11);

Figure 33: Insert statement


4.2.2 real prototype

The real prototype is quite similar to the test example. But it is not using an injection node anymore.

Figure 34: Prototyp

Instead a "mqtt in" node is used which receives the data from ttn.

To send a message via MQTT from ttn to Node-Red, the MQTT server of ttn must be used. For this, an API key must be created in ttn. MQTT configuration can be accessed via "Integrations".

Last update: 2022/03/09 20:40	emrp2021:start https://v	viki.eolab.de/doku.php?id=emrp2021:start&re	v=1646854840
nt testi	Applications > test1 > MQT	т	
Cverview	MQTT		
 End devices Live data 	create a new API key, which wi	s an MQTT server to work with streaming events. In order to use the MQT Il function as connection password. You can also use an existing API key, he connection information below to connect.	
<> Payload formatters X integrations	Connection credentials Public address	eul.cloud.thethings.network:1883	5
🏞 мотт	Public TLS address	eui.cloud.thethings.network:8883	5
Se Webhooks	Username	testfirstsensor@ttn	a
Storage Integration	Password	Generate new API key <u>So to API keys</u>	
AWS IOT			
Azure IoT Hub			
🏇 LoRa Cloud			
Collaborators			

Figure 36: How to generate API key for MQTT

After that "Generate new API key" can be clicked to generate a new key. This allows to use the MQTT server. From the last figure, the server and the port can also be copied from the field "Public address" and can be put within the properties of the MQTT Node. Also the used protocol must be specified within the properties in our case it is "MQTT V3.1.1".

Eigenschafte	n	٥	
Name	ttn_brocker		
Verbindung	Sicherheit Nachrichten		
Server	eu1.cloud.thethings.network Port 1883		
_	TLS		c
Protokoll	MQTT V3.1.1		
Sclient-ID	Leer lassen für automatische Generierung		
😍 Keep-Alive	60		
i Session	Bereinigte Sitzung (clean session) verwenden		

Figure 37: connection parameters

Furthermore, both the generated API key as password and additionally the username have to be provided. Both can be seen for example in figure 35 for this project and have to be added to the properties of MQTT node.

Node 'mqtt in' bea	rbeiten > Node 'm	nqtt-broker' bea	rbeiten			
Löschen				Abbrechen	Aktualisie	eren
Eigenschafte	n				4	
Name	ttn_brocker					
Verbindung		Sicherheit		Nachrichten		
Benutzername A Passwort	testfirstsensor@	ttn				

Figure 38: integration of password and username

The only part that is missing is the implementation of the topic to retrieve messages from the uplink traffic. The topic used is a topic provided by the MQTT server. Wildcards are used for the application_id and the device_id. This allows Node Red to receive messages not only from one device. Furthermore, json object must be selected as output.

Node 'mqtt in' be	arbeiten
Löschen	Abbrechen Fertig
Eigenschafte	en 🗈 🗎
Server	ttn_brocker 🗸
Topic	v3/+/devices/+/up
🛞 QoS	2 ~
🕞 Ausgang	Ein analysiertes (parsed) JSON-Objekt
Name Name	Name

Figure 39: Set output and right output

4.3 Datamodel

4.3.1 Tables

The database we use consists of static and dynamic tables.

ta_	trashbin
💡 bin_id	bigint(19)
longitude	double(10)
attude [double(10)
number_of_contai	iner numeric(19, 0)
place	varchar(10)
ta_conne	
	varchar(255)
	varchar(255)
gateway_eui	varchar(255)
time_gateway	timestamp
	integer(10)
	integer(10)
snr	float(4)
bandwidth	integer(10)
spreading_factor	integer(10)
coding_rate	varchar(255)
consumed_airtime	varchar(255)
topic	varchar(255) 🕅

Figure 40: Used tables and views

Among the static tables, we have, among others, the table "ta_trashbin", which stores all trash bins, their location, number of containers, and the city in which they are located. "bin_id" acts as the primary key for this table.

2		_id, latitude, ublic.trashbin;		er_of_container,	place
Data	Output Expl	ain Messages I	Notifications		
	bin_id 🔒	latitude .	In an although a		
4		double precision	double precision	number_of_container numeric	place text
_⊿ 1					
_	[PK] bigint	double precision 🧖	double precision		text
1	[PK] bigint 200000402	double precision \$	double precision 6.584027857		text 1 Moers
1 2	[PK] bigint 200000402 200001443	double precision 51.41055037 51.41388008	double precision 6.584027857 6.583538186		text 1 Moers 1 Moers
1 2 3	[PK] bigint 200000402 200001443 200001526	double precision 51.41055037 51.41388008 51.40912285	double precision 6.584027857 6.583538186 6.591295972		text 1 Moers 1 Moers 1 Moers
1 2 3 4	[PK] bigint 200000402 200001443 200001526 200001439	double precision 51.41055037 51.41388008 51.40912285 51.41414646	double precision 6.584027857 6.583538186 6.591295972 6.58943519		text Moers Moers Moers Moers Moers Moers Moers
1 2 3 4 5	[PK] bigint 200000402 200001443 200001526 200001439 200001440	double precision 51.41055037 51.41388008 51.40912285 51.41414646 51.41527005	double precision 6.584027857 6.583538186 6.591295972 6.58943519 6.589190606		text 1 Moers
1 2 3 4 5 6	[PK] bigint 200000402 200001443 200001526 200001439 200001440 200001441	double precision 51.41055037 51.41388008 51.40912285 51.41414646 51.41527005 51.41563886	double precision 6.584027857 6.583538186 6.591295972 6.58943519 6.589190606 6.589281969		text Moers Moers Moers Moers Moers Moers Moers
1 2 3 4 5 6 7	[PK] bigint 200000402 200001443 200001526 200001439 200001440 200001441 200001441	double precision 51.41055037 51.41389008 51.40912285 51.41414646 51.41527005 51.41563886 51.42117812	double precision 6.584027857 6.583538186 6.591295972 6.58943519 6.589190606 6.589281969 6.585614551		text 1 Moers 1 Moers 1 Moers 1 Moers 1 Moers 1 Moers 1 Moers
1 2 3 4 5 6 7 8	[PK] bigint 200000402 200001443 200001526 200001439 200001440 200001441 200001436 200000399	double precision 51.41055037 51.41388008 51.40912285 51.41414646 51.41527005 51.41563886 51.42117812 51.41945011	double precision 6.584027857 6.583538186 6.591295972 6.58943519 6.589190606 6.589281969 6.5895614551 6.591256745		text 1 Moers 1
1 2 3 4 5 6 7 8 9 9	[PK] bigint 200000402 200001443 200001526 200001440 200001440 200001441 200001436 200000399 200001432	double precision 51.41055037 51.41388008 51.40912285 51.41414646 51.41527005 51.41563886 51.42117812 51.41945011 51.4212601	double precision 6.584027857 6.583538186 6.591295972 6.58943519 6.589190606 6.589281969 6.585614551 6.591256745 6.591256745		text Moers Moers Moers Moers Moers Moers Moers Moers Moers Moers
1 2 3 4 5 6 7 8 9	[PK] bigint 200000402 200001443 200001526 200001439 200001440 200001440 200001441 200001436 200000399 200001432	double precision 51.41055037 51.41388008 51.40912285 51.41414646 51.41527005 51.41563886 51.42117812 51.42117812 51.4212601 51.4212601 51.4211679	double precision 6.584027857 6.583538186 6.591295972 6.58943519 6.58943519 6.589281969 6.585614551 6.591256745 6.588204056 6.588633545		text I Moers

Figure 41: Table for the trashbins

The other static table is "ta_node". This stores all active devices and their associated trash bins. "dev_eui" is the primary key and "bin_id" is the foreign key of the table. The table must be updated every time when a new device is attached to a trash bin. Otherwise, no new measured values can be stored.

1	SELECT	dev_eui	, bin_id	
2	FR	OM publi	c.node;	
Dat	a Output	Explain	Messages	I.
	dev_eui [PK] charac	:ter (16) 🖋	bin_id bigint	
1	70B3D57E	0004996E	200000402	

Figure 42: Table for the node

To the dynamic tables, which are filled by new measured values, belongs "ta_measurement". This contains only the measured values for the respective sensors. The primary key consists of the columns "dev_eui", "time_gateway" and "channel". Channel indicates which measurement type is present.

SELE									
	ROM publi	<pre>c.ta_measu</pre>	rement;						
a Outout	Evolain	Maccanae	Notifications						
a Output	Explain	Messages	Notifications						
a Output dev_eui [PK] char		time_gateway		channel IPKI charact	msg_id character (16)	application, text	jd 🇨	measurement	

The next dynamic table is "ta_connection". This uses the "msg_id" and "time_gateway" as primary keys. The table consists of columns that refer to the respective gateway (gateway_id, gateway_eui, rssi, channel rssi, snr, time_gateway) and the other columns refer to the transmission of the data.

2024/05/17 08:10	31/39	Environmental Monitoring Research Project			
<pre>SELECT mog_id, gateway_id, gateway_eui, rr bandwidth, spreading_factor, coding time_gateway FROM public.ta_connection;</pre>					
Jata Output Explain Messages Notifications					
mag_id gateway_id gateway_eu / nas [PR] character(16) / [PR] text / text		uned_airtime / topic / time_gateway start (ii) time to filme zone /			
Figure 44: Table "ta conne					

4.3.2 Views and Trigger

"ta_failure" is a table that is structured in the same way as "ta_measurement". It is also indirectly filled by "ta_measurement" by using an insert trigger. This stores questionable new records also into the "ta_failure" table. Beside the tables there are also two views which serve as bases for Dash Plotly. "vi_last_meas" has the last measurement for each microcontroller.

```
CREATE OR REPLACE VIEW public.vi_last_meas
 AS
 WITH last_meas AS (
         SELECT ta_measurement.dev_eui,
           max(ta_measurement.time_gateway) AS last_date
           FROM ta_measurement
          WHERE ta_measurement.channel = 'distance'::bpchar
          GROUP BY ta_measurement.dev_eui, ta_measurement.channel
        )
 SELECT tb.bin_id,
    tb.longitude,
    tb.latitude,
    last_meas.dev_eui,
    last_meas.last_date,
    tm.channel,
    tm.measurement
   FROM ta_measurement tm
     JOIN last_meas ON last_meas.dev_eui = tm.dev_eui AND last_meas.last_date = tm.time_gateway
     JOIN ta_node nd ON last_meas.dev_eui = nd.dev_eui
     JOIN ta_trashbin tb ON nd.bin_id = tb.bin_id
  WHERE tm.channel = 'distance'::bpchar;
```

```
Figure 45: View "vi_last_meas"
```

"vi_prob_meas" has the latest problematic record for the microcontrollers. In case of missing sensor measurements, the number of missing measurements is displayed in the last column.

```
CREATE OR REPLACE VIEW public.vi_prob_meas
AS
with last_meas_pro_channel as(
SELECT nd.bin_id,
   ( SELECT ta_trashbin.longitude
          FROM ta_trashbin
         WHERE ta_trashbin.bin_id = nd.bin_id) AS longitude,
    ( SELECT ta_trashbin.latitude
          FROM ta_trashbin
         WHERE ta_trashbin.bin_id = nd.bin_id) AS latitude,
   tf.dev_eui.
   tf.channel.
   max(tf.time_gateway) AS last_date.
   (( SELECT count(DISTINCT ta_measurement.channel) AS count
          FROM ta_measurement)) - (( SELECT count(ta_measurement.channel) AS count
          FROM ta_measurement
         WHERE ta_measurement.time_gateway = max(tf.time_gateway) AND ta_measurement.dev_eui = tf.dev_eui
         GROUP BY ta_measurement.time_gateway)) AS number_of_missing_sensors
  FROM ta failure tf
    JOIN ta_node nd ON nd.dev_eu1 = tf.dev_eu1
 GROUP BY tf.dev_eui, tf.channel, nd.bin_id)
 Select lm.bin_id,lm.longitude
        ,lm.latitude,lm.dev_eui
        ,lm.channel,lm.last_date
        ,lm.number_of_missing_sensors, tm.measurement
                     from ta_measurement tm inner join last_meas_pro_channel lm on lm.dev_eui = tm.dev_eui
                                                                               and lm.last_date = tm.time_gateway
                                                                               and lm.channel = tm.channel;
```

```
Figure 46: View "vi_prob_meas"
```

The trigger checks two things firstly whether the data records contain measured values, if not the data record is also written to the failure table. The next condition that is checked is whether all sensors were taken into account during the transmission of the data records. If not, the data records are written into the failure table. If new data records appear that are free of errors, the old data records are deleted from the failure table.

```
-- FUNCTION: public.update_strange_measurements()
-- DROP FUNCTION public.update_strange_measurements();
CREATE OR REPLACE FUNCTION public.update_strange_measurements()
     RETURNS trigger
     LANGUAGE 'plpgsql'
     COST 100
     VOLATILE NOT LEAKPROOF
 AS SBODYS
DECLARE
  sensor_count integer := (select count(distinct(channel)) from public.ta_measurement);
  act_sensor_dev integer := (select count(channel) from ta_measurement where time_gateway = NEW.time_gateway and dev_eui = NEW.dev_eui group by NEW.time_gateway);
BEGIN
 If (NEW.MEASUREMENT IS NULL) THEN
  Insert into public.ta_failure (dev_eui, time_gateway, channel, msg_id, application_id, measurement)
                            values (NEW.dev_eu1, NEW.time_gateway, NEW.channel,NEM.msg_1d
,NEW.application_1d, NEW.measurement);
PERFORM pg_sleep(2);
 elsif sensor_count>act_sensor_dev
 then Insert into public.ta_failure (dev_eui, time_gateway, channel, msg_id, application_id, measurement)
                             values (NEW.dev_eui, NEW.time_gateway, NEW.channel,NEW.msg_id
                            ,NEW.application_id, NEW.measurement);
END IF;
If ((NEW.MEASUREMENT IS NOT NULL)) AND (sensor_count=act_sensor_dev) THEN
 Delete from public.ta_failure where dev_eui = NEW.dev_eui;
END IF;
RETURN NEW:
END:
```

Figure 47: Insert-Trigger after each insert

4.4 Dash Plotly

Plotly develops Dash and also offers a platform for writing and deploying Dash apps in an enterprise environment.

			 Python 	FORUM	SHOW & TELL	GALLERY	() Star
e					n This Page		
				774	hat's Dash?		
Dash Python Us	ser Guide				sh Tutorial sh Calibadis		
What's Dash?				in	en Saurce Component terprise Component LB sating Your Own Comp	braries	
đ	¶3	9			yond the Basics osystem Integration		
Introduction	2017 Announcement Essay	Dash App Gallery		711	oduction Capabilities string Help		
Dash Tutorial							
28	5	-12					
Installation	Layout	Basic Callbacks					
interactive Graphing and	alg Sharing Data Between						

Figure 48: Dash User Guide

What is Dash?

- Dash is a Python framework for building web applications.
- Dash is simple enough that you can bind a user interface to your code in less than 10 minutes.
- Dash is the original low-code framework for rapidly building data apps in Python, R, Julia, and F# (experimental).

Why Dash?

- Dash is ideal for building and deploying data apps with customized user interfaces.
- It enables you to build dashboards using pure Python.
- Dash is open-source, and its apps run on the web browser.

Dash Installation

In order to start using Dash, we have to install several packages.

- 1. The core dash backend.
- 2. Dash front-end
- 3. Dash HTML components
- 4. Dash core components
- 5. Plotly

Dash App Layout

A Dash application is usually composed of two parts. The first part is the layout and describes what the app will look like and the second part describes the interactivity of the application. Dash provides HTML classes that enable us to generate HTML content with Python. To use these classes, we need to import dash_core_components and dash_html_components. You can also create your own custom components using Javascript and React Js.


In order to get started, we will create an app.py file in our favorite text editor, then import the packages mentioned.

Figure 49: Import Libraries

When we initialize Dash, we call the Dash class of dash. After that is done, we create an HTML div using the Div class from dash_html_components. Dash_html_component has all HTML tags, and dash_core_components has Graph, which renders interactive data visualizations by using plotly.js. The graph is used to create graphs on our layout. Dash also allows you to style the graph by changing colors for the background and text. Graph classes expect a figure object with the data to be plotted and the layout details. If you use the style attribute and pass an object with a specific color, you can change the background and so on.

In the figure below you will see how our layout is structured and what's included.

Figure 50: Dash Layout

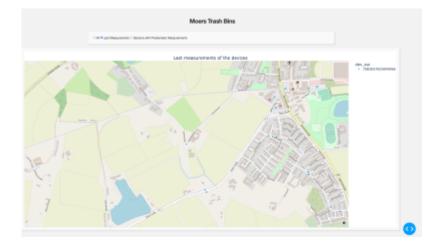

Dash apps use callback functions to update the properties of another component when an input property changes. In-Dash, any "output" can have multiple "input" components. And in our example, we are going to use multiple-input call back functions for example we had one callback function that take two inputs (intervals and data_type) and display one output as a graph output of what we have done for the trash bins measurements in Moers as you will see below in the below following figures.

Figure 51: All Trash Bins Located in Moers

in the above figure, you will be able to see all implemented trashbin with all information about them as (location of trashbin, trashbin id)

As can be seen in the below image, we display only the latest measurements from the active sensors upon request of the user, which we use as an input to a call-back function.

Figure 52: Last Measurements

In the below figure you will show more detailed information about our project

Figure 53: Problemetic Measurements

Finally, remember that Dash is built on top of Flask, so the webserver needs to be running just like Flask for us to view our visualization. We also set debug to true so no fresh server is needed every time we modify the visualization.

Figure 54: Main Function

For our project, this is not enough for that reason we do some extra programming stuff that allows us to grab data from the database and display it. So for that, we prepared the following queries script file which facilitates our working and allows us to be connected to our own database which is built-in progress as seen below

Figure 55: Database Connection

then we define some functions which allow us to get needed information from the database as you will see in the figures below

Figure 57: Queries Part 2

And now we can say that everything is done regarding the dash plotly part in our project.

5. Dynamic pivot and Dash Plotly

In the representation of the second map presented so far, which contains the last measurements for each device, only the last filling levels are taken into account. All other measured values are not considered. In order to be able to display all measured values and also new values based on new sensors, two basic requirements must be met. First, the measured values must be aggregated and then pivotoized. In the second point, it must be ensured that if a measurement type is added, this is also dynamically taken into account in the pivoted representation.

After an intensive research we have found a prescribed function which is able to fulfill our requirements with few restrictions. The original function which can also be found under the link in the last section creates temporary tables which are deleted after execution. In our approach we have changed this point. A table is created and based on this table a view was created.6 parameters are passed. The first parameter is the name of the new view. The second parameter is the query used for the table of the view. The third parameter contains columns that represent the reference columns that will be used for pivoting. New columns are specified by using the fourth parameter. The last two parameters define the content which can be found in the new columns and it is also possible to define a order for all columns. The only disadvantage is that the table used for the pivotized view has to be deleted every time the function is called, the same is true for the view.

Dash Plotly had to be adapted as well. Every time the map is updated for the latest readings, the function must also be called to create a new table and view. In our case it is the function 'db_exec'.

```
-- FUNCTION: public.db_exec()
-- DROP FUNCTION public.db_exec():
CREATE OR REPLACE FUNCTION public.db exec(
    RETURNS vold
    LANGUAGE 'plpgsql'
    COST 100
    VOLATILE PARALLEL UNSAFE
AS $BODY$
BEGIN
                perform * from colpivot('_dynamic_pivot', 'WITH last_meas AS (
        SELECT ta_measurement.dev_eu1,
           max(ta_measurement.time_gateway) AS last_date
          FROM ta_measurement
          GROUP BY ta_measurement.dev_eui
 SELECT tb.bin_id,
    tb.longitude,
    tb.latitude,
    last_meas.dev_eui,
    last_meas.last_date.
    tm.channel,
    tm.measurement
   FROM ta_measurement tm
     JOIN last_meas ON last_meas.dev_eui = tm.dev_eui AND last_meas.last_date = tm.time_gateway
     JOIN ta_node nd ON last_meas.dev_eui = nd.dev_eui
     JOIN ta_trashbin tb ON nd.bin_id = tb.bin_id ',
    array['bin_id','longitude','latitude','dev_eui', 'last_date'], array['channel'], '#.measurement', null);
       END;
$BODY$;
ALTER FUNCTION public.db_exec()
    OWNER TO emrp2021_master;
Figure 58: Funtion db exec
```

The function has no parameters but serves to call the original function 'colpivot' with the parameters. The nesting of the functions was done because the specification of the parameters in Python is very complex.

```
def get_all(schema, table): # Show-Up all TrashBins and Device_id
   query = "SELECT * FROM public.ta trashbin ORDER BY bin id ASC"
    conn_trashbin_dev = pd.read_sql(query, conn)
   return conn trashbin dev
def get active(schema, table): # Show-Up all Measurments of Active Sensor
   cursor.callproc('db exec')
    query = "SELECT * FROM public._dynamic_pivot"
   active_meas = pd.read_sql(query, conn)
    return active_meas
def get failure(schema, table): # Show-Up all Measurments of In-Active Sensor
   query = "SELECT * FROM public.vi prob meas ORDER BY dev eui ASC"
    failure_meas = pd.read_sql(query, conn)
   return failure meas
def get_distance(schema, table):
   query = "SELECT * FROM public.vi_last_meas WHERE channel = 'distance' order by last_date"
   dist = pd.read_sql(query, conn)
   return(dist)
def get temperature(schema, table):
   query = "SELECT * FROM public.vi_last_meas WHERE channel = 'temperature' order by last_date"
   temp = pd.read sql(query, conn)
   return(temp)
```

Figure 59: Call of the function db exec

As a result, it is now possible to call up the last measured values for each device in a pivoted manner, instead of having to decide on a measurement type as in the previous version, it is now possible to call up the last date and the corresponding measurements for all devices.

Figure 60: last measurement per device

In order for it to work, all columns must always be displayed, instead of defining only some columns statically, as was done in the previous version.

```
if x == "active":
   df6 = get active("public", " dynamic pivot")
   print(df6.columns.values.tolist())
   fig = px.scatter mapbox(df6,
                           title="Last measurements of the devices",
                           lat="latitude",
                            lon="longitude",
                            hover name="bin id",
                           hover data=
                                df6.columns.values.tolist()
                            color='dev eui',
                            color continuous scale=px.colors.sequential.YlOrRd,
                            zoom=15,
                            height=900,
                            size max=5,)
   fig.update layout(mapbox style="open-street-map", title x=0.5,
                    title y=0.97, font size=16)
   fig.update_layout(margin={
                     "r": 0, "t": 50, "l": 0, "b": 0})
```

Figure 61: choose all columns

2024/05/17 08:10

6. Links and Tutorials

- Mix-Playlist about different topics: https://www.youtube.com/playlist?list=PL2SRmCaleDVibo6IUItyKcmDCH955hqAT
- Link for ttn: https://www.thethingsnetwork.org/

39/39

- SQL-Querries (Postgresql) in Node-Red: https://flows.nodered.org/node/node-red-contrib-postgresql/in/MFnap-qr-MJE
- TTN, MQTT Node-REd: https://www.thethingsindustries.com/docs/integrations/mqtt/

From: https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link: https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854840

Last update: 2022/03/09 20:40

