
2024/05/17 08:57 1/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Environmental Monitoring Research Project
2021

 Intro to Tasmota, IoT, and NIG (NIG: Node-RED, InfluxDB, Grafana)
More on Tasmota with WEMOS D1 Mini (ESP8266)

Student Pages

1. Problem description

The city of Moers has bought a lot of new trash bins. In order to be able to monitor the filling level of
these trash bins, the trash bins have to be equipped with appropriate hardware and software. This
project can be seen as a first prototype which goes through the whole process from the collection of
the data to the storage and visualization of the data. We use technologies that are also known from
the smart city context.

2. Methods and Tools

For our project, we have used LoRaWAN (Low-power wide-area-network), MQTT (MQ Telemetry
Transport), TTN (The Things Network), and, Node-RED to efficiently transmit data between devices
and the database.

Before we can describe what is LoRaWAN first we need to understand what is LoRa. LoRa is a radio
modulation technique that is essentially a way of manipulating radio waves to encode information
using a chirped (chirp spread spectrum technology), multi-symbol format. LoRa as a term can also
refer to the systems that support this modulation technique or the communication network that IoT
applications use.

Figure 1: MQTT & LoRaWan

https://wiki.eolab.de/doku.php?id=user:jan001:intro_iot_tasmota_nig
https://wiki.eolab.de/doku.php?id=emrp2021:wemos_tasmota:start
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:mqtt1.jpg

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

The main advantages of LoRa are its long-range capability and its affordability. A typical use case for
LoRa is in smart cities, where low-powered and inexpensive internet of things devices (typically
sensors or monitors) spread across a large area send small packets of data sporadically to a central
administrator.LoRaWAN is a low-power, wide-area networking protocol built on top of the LoRa radio
modulation technique. It wirelessly connects devices to the internet and manages communication
between end-node devices and network gateways. The usage of LoRaWAN in industrial spaces and
smart cities is growing because it is an affordable long-range, bi-directional communication protocol
with very low power consumption — devices can run for ten years on a small battery. It uses the
unlicensed ISM (Industrial, Scientific, Medical) radio bands for network deployments.

An end device can connect to a network with LoRaWAN in two ways:

Over-the-air Activation (OTAA): A device has to establish a network key and an application session
key to connect with the network. Activation by Personalization (ABP): A device is hardcoded with keys
needed to communicate with the network, making for a less secure but easier connection. In our
project OTAA is used for the activation of the end device. Before OTAA can be used the end device
needs to store its DevEUI, AppEUI and Appkey. The AppEUI is required by the network server which is
storing the AppEUI of the end device. The AppEUI is used as a unique indentifier for the application
server. The AppKey is responsible for the integrity of the message by generating the Message
Integrity Code (MIC). AppKey is also stored by the network server. Using MIC a join-request is sent to
the network server. The message contains the DevEUI, AppEUI and the DevNonce. DevNonce is a
randomly generated number. After that the network server receives the message it checks whether
the DevNonce has been used before. The network server uses its stored AppKey to generate its own
MIC. If both MICs are the same then the end device is authenticated by the network server and it
generates the two session keys, NwkSKey and AppSkey. Then the end device gets its join-accept
message from the network server. By using the AppKey and the AppNonce which is part of every
joint-accept message the end device can derive the NwkSKey and AppSkey. Besides the two session
keys, DevAddr is also stored in the end device. It was created by the network server to identify the
device within the network.

It is not necessary to go into all the details of Lorawan. However, to better understand this project it is
useful to have an understanding of uplink and downlink messages. Uplink messages are messages
sent from the device to the network server, which obtains the message through an appropriate
gateway. From the network server, the message is forwarded to the correct application server.
Downlink messages work the other way around in terms of information flow. The network server
forwards a message from an application server to a device via a gateway.
MQTT on the other hand is a lightweight, publish-subscribe network protocol that transports messages
between devices. The MQTT protocol defines two types of network entities: a message broker and a
number of clients. An MQTT broker is a server that receives all messages from the clients and then
routes the messages to the appropriate destination clients. An MQTT client is any device (from a
microcontroller up to a fully-fledged server) that runs an MQTT library and connects to an MQTT
broker over a network.

Information is organized in a hierarchy of topics. When a publisher has a new item of data to
distribute, it sends a control message with the data to the connected broker. The broker then
distributes the information to any clients that have subscribed to that topic. The publisher does not
need to have any data on the number of locations of subscribers, and subscribers, in turn, do not
have to be configured with any data about the publishers.

2024/05/17 08:57 3/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 2: Structure of MQTT

If a broker receives a message on a topic for which there are no current subscribers, the broker
discards the message unless the publisher of the message designated the message as a retained
message. A retained message is a normal MQTT message with the retained flag set to true. The
broker stores the last retained message and the corresponding QoS for the selected topic. Each client
that subscribes to a topic pattern that matches the topic of the retained message receives the
retained message immediately after they subscribe. The broker stores only one retained message per
topic. This allows new subscribers to a topic to receive the most current value rather than waiting for
the next update from a publisher.

When a publishing client first connects to the broker, it can set up a default message to be sent to
subscribers if the broker detects that the publishing client has unexpectedly disconnected from the
broker.

Clients only interact with a broker, but a system may contain several broker servers that exchange
data based on their current subscribers' topics.

A minimal MQTT control message can be as little as two bytes of data. A control message can carry
nearly 256 megabytes of data if needed. There are fourteen defined message types used to connect
and disconnect a client from a broker, to publish data, to acknowledge receipt of data, and to
supervise the connection between client and server.

MQTT relies on the TCP protocol for data transmission. A variant, MQTT-SN, is used over other
transports such as UDP or Bluetooth.

MQTT sends connection credentials in plain text format and does not include any measures for
security or authentication. This can be provided by using TLS to encrypt and protect the transferred
information against interception, modification, or forgery.

The Things Network, commonly known as TTN, is an open-source infrastructure aiming at providing a
free LoRaWAN network cover. This project is developed by a growing community across the world and
is based on voluntary contributions to the project. Their website presents different guides to allow
people to deploy gateways in their city to grow the network. These antennas provide both long-range
coverage with LoRa and short-range with Bluetooth 4.2. Thanks to the open-source developments on

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:mqtt.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

the source code and on the infrastructure, their coverage is already quite good in big cities and it is
spreading in smaller ones.

The Things Network uses MQTT to publish device activations and messages but also allows you to
publish a message for a specific device in response.

Figure 3: Integration of the relevant technologies

Node-RED is a programming tool for wiring together hardware devices, APIs and online services. It
provides a browser-based editor that makes it easy to wire together flows using the wide range of
nodes in the palette that can be deployed to its runtime in a single-click. The light-weight runtime is
built on Node.js, taking full advantage of its event-driven, non-blocking model. This makes it ideal to
run at the edge of the network on low-cost hardware such as the Raspberry Pi as well as in the cloud.

With over 225,000 modules in Node's package repository, it is easy to extend the range of palette
nodes to add new capabilities.

Figure 4: Node-Red

Node-RED consists of a Node.js based runtime that you point a web browser at to access the flow
editor. Within the browser you create your application by dragging nodes from your palette into a
workspace and start to wire them together. With a single click, the application is deployed back to the
runtime where it is run.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:lorawan_application_architecture_lrnz8sf7oo.jpg
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:node-red-example-article-hello-world_1.png

2024/05/17 08:57 5/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

The palette of nodes can be easily extended by installing new nodes created by the community and
the flows you create can be easily shared as JSON files.

3. Concept

The entire technical stack that is used consists of different layers. On the one hand, we have the
microcontroller and the Lora module and the antenna, which are used to forward measurement data.
By means of Loawan, these data arrive as uplink messages in the ttn. There, the content of the uplink
message is communicated to Node-Red using MQTT. Here, the forwarded uplink message becomes a
“msg” that is usual for Node-Red. This is processed with the appropriate nodes and the extracted data
is stored in the last step in Node-Red in Postgresql. The data serves as the basis for the visualization
in Dash Plotly. Technically we use as microcontroller development board the adafruit feather M0 and
two sensors to measure the temperature and distance. This also contains a lora module which works
via SPI with the microcontroller and also a corresponding antenna for data transfer. Via IC2 the
microcontroller gets the measurement data from the distance sensor VL53L1X.

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 5: Hardware

4. Implementation

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:sensors_microcont.png

2024/05/17 08:57 7/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

4.1 Prototype and data transfer

4.1.1 TTN

After you have logged in to ttn, you have to click on the “Applications” section. Then you will be
redirected and all registered devices will be listed. To register a new device, click on “Add
Application”.

Figure 6: Add application in ttn

Then you can define an ID and name for the application and create the application. It should be noted
that the ID must not be an ID that is already assigned and must contain only numbers, lowercase
letters and dashes.

Figure 7: Add application (details)

In the next step, a device can be assigned to the application by clicking “Add end Device”. The
settings must be entered manually. Ttn automatically assigns an end device id. DevEUI and AppEUI
have to be generated. The AppEUI is able to identify the owner of the end device. The DevEUI is used
to identify the end device once. In the frequency plan the recommended frequency for Euroe should
be chosen. The other parameters for the lorawan version and the regional parameter setting can be
found in the datasheet of the used microcontroller.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:ttn_add_application.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:ttn_application_details.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 8: Register device

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:ttn_add_end_device.png

2024/05/17 08:57 9/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

After the end device is created it can be clicked by user. Then a new page opens which contains all
parameters for the end device. Here the data formats for the keys DevEui, AppEUI and AppKey can be
formatted. It is important to note that the DevEUI and AppEUI keys are entered in the Little Endian
Vormat in the script. AppKey is needed in the Big Endian Vormat. This works by pressing “Toggle
array formatting” next to the keys. The symbol has been outlined in red in the next figure.

Figure 9: Change data format

4.1.2 relevant libraries and sketches

The following libraries should be installed under Tools → Manage Libraries:

MCCI LoRaWan LMIC library
SparkFun VL53L1X 4m Laser Distance Sensor
DallasTemperature

“MCCI LoRaWan LMIC library” is used for the transmission of the measurements to the ttn. “SparkFun
VL53L1X 4m Laser Distance Sensor” is used for the programming of the distance sensor and
“DallasTemperature” is used for the programming of the temperature sensor.

The final sketch that was used is just a mix of different example sketches. The following example
sketches were used as a inspiration for the final sketch:

ttn-otaa (MCCI LoRaWan LMIC library)
Example1_ReadDistance (SparkFun VL53L1X 4m Laser Distance Sensor)
simple (DallasTemperature)

How to open an example is illustrated in the next figure.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:ttn_big_little_endian.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 10: How to open the examples

4.1.3 Embedded programming

At the beginning of the script the previously defined keys must be specified, because without these
keys no authentication is possible. OTAA was explained in detail at the beginning of the
documentation, so parts of the code that deal with activation are only briefly mentioned.

Figure 11: Implementation of the keys

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:open_example.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:script_schluessel.png

2024/05/17 08:57 11/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Most of the important things happen in the do_send, onEvent and setup functions. “setup” is used to
test wheather the distance sensor is available and initialize LMIC.

Figure 12: setup function

The do_send function is the most relevant function because the data for transmission in ttn are
prepared there. All measured values are received there and prepared as bytes for sending. If no
transmission is currently running, distance data is retrieved and stored as byte.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:set_up.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:distance.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 13: get distance and store as byte

The same principal is applied to the temperature data. Here you have to take care that the
temperature is integer, therefore the temperature is multiplied by 100.

Figure 14: get temperature and store as byte

“onEvent” reacts on different events that can occur. For example it is used to handle events that are
relevant for the authentication and activation of the device.

After the data has entered the ttn via an uplink message, the high and low bytes must be decoded so
that both the high byte and the low byte are in the correct position. Furthermore the temperature has
to be calculated again to a decimal number by dividing by 100.

Figure 15: Decoding

The incoming data is then displayed in the “Live data” section.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:temperature.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:decode.png

2024/05/17 08:57 13/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 16: Select live data

The pin configuration to ensure a successful SPI communication between the microcontroller and the
Lora module must be done exactly as shown in the next picture.

Figure 17: Pin configuration

4.2 Implementation in Node-Red

4.2.1 "Theoretical" test with 3 gateways

The entire flow starts with an injection node which contains a payload consisting of a file which was
created by TTN. The only difference is that for testing purposes several gateways were added to the
file.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:live_data.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:spi_confi.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 18: Test data

The first gateway is the gateway from the original message, all other gateways and their ids were
made up to test the entire flow and database. The initial injection node containing the modified json
file has five connections to other nodes.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:bild1.png

2024/05/17 08:57 15/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 19: Flow for “one” gateway

The simplest case is that a message is only received from one gateway. In this case the function
“1_gateway” contains all gateway and connection data.

Figure 20: Function 1_gateway

These parameters are extracted individually from the payload and assigned to new variables. This
happens only if the array “msg.payload.uplink.rx_metadata” has the length one, i.e. contains only one
gateway. If more gateways are contained, msg is initialized with null and nothing is stored in the
database. The newly set variables are stored in “msg.params”. “msg.params” contains the
parameters which will be used in the following postgresql-node.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:bild2.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:1_gateway.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 21: Store connection data

The set parameters are the input for the insert statement within the node.

Figure 22: Insert statement with the necessary parameters

This saves the previously defined values in the database in the table “ta_connection”. For the
postgreql node some settings must be made so that the database can be used.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:store_connection_data.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:store_connection_data_param.png

2024/05/17 08:57 17/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 23: Settings for the database

Firstly, the host and the database used must be specified. Also, the database user and the password
of the database must be specified. However, it should be noted that if one postgresql node is changed
then all postgresql nodes are automatically changed. The measured values for the distance and the
temperature are extracted by the nodes “get_distance” and “get_temp_meas” from the payload of
the initial json file.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:database_config.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 24: Functions to extract data for the measurement tables

Both functions are designed to extract data only if measured values are available, otherwise msg is
set to zero.

Figure 25: Details for get_distance

Similar to the example before, the necessary parts of the payload are extracted here and set as
parameters for the following query. This was illustrated for “get_distance” in the figure but the same
principle can be found in “get_temp_meas”. However, transferred json files that have multiple
gateways are a bit more complicated. The function “more_than_1_gatew” checks if the object
contains more than one gateway and initializes the payload with the object for the gateways. If not,
msg is initialized with null.

Figure 26: Function node to handle more than one gateway

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:get_dist_get_temp.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:get_distance.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:more_than_one_gw.png

2024/05/17 08:57 19/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 27: Details for “more_than_1_gatew”

The node “split” ensures that the payload is always split off as an array with the length one, so that,
for example, an object containing 3 gateways is split three times into three payloads.

Figure 28:split node

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:more_than_one_gw_func.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:split.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 29: Details for the split node

After that each payload is forwarded in the flow to the function “get_connection_data_db”. There the
relevant parts of the split objects are extracted and stored in the payload as an array. It is important
that “msg.topic” is also provided with a unique value. This will be important for the next join node.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:split_properties.png

2024/05/17 08:57 21/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 30: Details for the function “get_connection_data”

In the join node, the gateways are combined with the connection data. This results in data sets with
the same connection data but different gateway information. With the use of the join Node is to be
considered that the individual message parts must set in each case unique msg.topics before and that
with the properties of the join Node the number of the message parts is specified and also the hook
“and with each following message” is set. If this is not done the join node may not be able to process
more than 2 separate gateway information. All joined data will be stored as a value object.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:get_connection_data_db.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 31: Properties of the join node

Then the function “parameter_DB” is used to extract all values from the merged object. For this the
msg.topics “connection” and “transmission” defined before are used.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:join_properties.png

2024/05/17 08:57 23/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 32: Parameters based on the topics connection and transmission

At the end, the defined parameters from msg.params are inserted into the insert-statement. It is
important to note that the number of times the query is executed after the initial injection depends on
how many gateways were split from the initial object. For example, if three gateways were split from
the object then the query will also be filled three times with different parameters for the gateways.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:parameter_db.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 33: Insert statement

4.2.2 real prototype

The real prototype is quite similar to the test example. But it is not using an injection node anymore.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:store_connection_data_multiple_gw.png

2024/05/17 08:57 25/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 34: Prototyp

Instead a “mqtt in” node is used which receives the data from ttn.

Figure 35: MQTT in node

To send a message via MQTT from ttn to Node-Red, the MQTT server of ttn must be used. For this, an
API key must be created in ttn. MQTT configuration can be accessed via “Integrations”.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:prototyp.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:mqtt_in.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 36: How to generate API key for MQTT

After that “Generate new API key” can be clicked to generate a new key. This allows to use the MQTT
server. From the last figure, the server and the port can also be copied from the field “Public address”
and can be put within the properties of the MQTT Node. Also the used protocol must be specified
within the properties in our case it is “MQTT V3.1.1”.

Figure 37: connection parameters

Furthermore, both the generated API key as password and additionally the username have to be
provided. Both can be seen for example in figure 35 for this project and have to be added to the
properties of MQTT node.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:api_key.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:connection_parameters.png

2024/05/17 08:57 27/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 38: integration of password and username

The only part that is missing is the implementation of the topic to retrieve messages from the uplink
traffic. The topic used is a topic provided by the MQTT server. Wildcards are used for the
application_id and the device_id. This allows Node Red to receive messages not only from one device.
Furthermore, json object must be selected as output.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:username_password_node_red.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 39: Set output and right output

4.3 Datamodel

4.3.1 Tables

The database we use consists of static and dynamic tables.

Figure 40: Used tables and views

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:topic_jsonob.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:datamodelpng.png

2024/05/17 08:57 29/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Among the static tables, we have, among others, the table “ta_trashbin”, which stores all trash bins,
their location, number of containers, and the city in which they are located. “bin_id” acts as the
primary key for this table.

Figure 41: Table for the trashbins

The other static table is “ta_node”. This stores all active devices and their associated trash bins.
“dev_eui” is the primary key and “bin_id” is the foreign key of the table. The table must be updated
every time when a new device is attached to a trash bin. Otherwise, no new measured values can be
stored.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:trashbin.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 42: Table for the node

To the dynamic tables, which are filled by new measured values, belongs “ta_measurement”. This
contains only the measured values for the respective sensors. The primary key consists of the
columns “dev_eui”, “time_gateway” and “channel”. Channel indicates which measurement type is
present.

Figure 43: Table “ta_measurement”

The next dynamic table is “ta_connection”. This uses the “msg_id” and “time_gateway” as primary
keys. The table consists of columns that refer to the respective gateway (gateway_id, gateway_eui,
rssi, channel_rssi, snr, time_gateway) and the other columns refer to the transmission of the data.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:node.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:ta_measurement.png

2024/05/17 08:57 31/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 44: Table “ta_connection”

4.3.2 Views and Trigger

“ta_failure” is a table that is structured in the same way as “ta_measurement”. It is also indirectly
filled by “ta_measurement” by using an insert trigger. This stores questionable new records also into
the “ta_failure” table. Beside the tables there are also two views which serve as bases for Dash Plotly.
“vi_last_meas” has the last measurement for each microcontroller.

Figure 45: View “vi_last_meas”

“vi_prob_meas” has the latest problematic record for the microcontrollers. In case of missing sensor
measurements, the number of missing measurements is displayed in the last column.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:ta_connection.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:vi_last_meas.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

Figure 46: View “vi_prob_meas”

The trigger checks two things firstly whether the data records contain measured values, if not the
data record is also written to the failure table. The next condition that is checked is whether all
sensors were taken into account during the transmission of the data records. If not, the data records
are written into the failure table. If new data records appear that are free of errors, the old data
records are deleted from the failure table.

Figure 47: Insert-Trigger after each insert

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:vi_prob_meas.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:trigger.png

2024/05/17 08:57 33/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

4.4 Dash Plotly

Plotly develops Dash and also offers a platform for writing and deploying Dash apps in an enterprise
environment.

Figure 48: Dash User Guide

What is Dash?

Dash is a Python framework for building web applications.
Dash is simple enough that you can bind a user interface to your code in less than 10 minutes.
Dash is the original low-code framework for rapidly building data apps in Python, R, Julia, and
F# (experimental).

Why Dash?

Dash is ideal for building and deploying data apps with customized user interfaces.
It enables you to build dashboards using pure Python.
Dash is open-source, and its apps run on the web browser.

Dash Installation

In order to start using Dash, we have to install several packages.

The core dash backend.1.
Dash front-end2.
Dash HTML components3.
Dash core components4.
Plotly5.

Dash App Layout

A Dash application is usually composed of two parts. The first part is the layout and describes what
the app will look like and the second part describes the interactivity of the application. Dash provides
HTML classes that enable us to generate HTML content with Python. To use these classes, we need to

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:dashplotly001.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

import dash_core_components and dash_html_components. You can also create your own custom
components using Javascript and React Js.

In order to get started, we will create an app.py file in our favorite text editor, then import the
packages mentioned.

Figure 49: Import Libraries

When we initialize Dash, we call the Dash class of dash. After that is done, we create an HTML div
using the Div class from dash_html_components. Dash_html_component has all HTML tags, and
dash_core_components has Graph, which renders interactive data visualizations by using plotly.js.
The graph is used to create graphs on our layout. Dash also allows you to style the graph by changing
colors for the background and text. Graph classes expect a figure object with the data to be plotted
and the layout details. If you use the style attribute and pass an object with a specific color, you can
change the background and so on.

In the figure below you will see how our layout is structured and what's included.

Figure 50: Dash Layout

Dash apps use callback functions to update the properties of another component when an input
property changes. In-Dash, any “output” can have multiple “input” components. And in our example,
we are going to use multiple-input call back functions for example we had one callback function that
take two inputs (intervals and data_type) and display one output as a graph output of what we have
done for the trash bins measurements in Moers as you will see below in the below following figures.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:step001.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:step002.png

2024/05/17 08:57 35/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 51: All Trash Bins Located in Moers

in the above figure, you will be able to see all implemented trashbin with all information about them
as (location of trashbin, trashbin id)

As can be seen in the below image, we display only the latest measurements from the active sensors
upon request of the user, which we use as an input to a call-back function.

Figure 52: Last Measurements

In the below figure you will show more detailed information about our project

Figure 53: Problemetic Measurements

Finally, remember that Dash is built on top of Flask, so the webserver needs to be running just like
Flask for us to view our visualization. We also set debug to true so no fresh server is needed every

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:alltrashbins.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:active_sensors.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:last_measurement.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

time we modify the visualization.

Figure 54: Main Function

For our project, this is not enough for that reason we do some extra programming stuff that allows us
to grab data from the database and display it. So for that, we prepared the following queries script file
which facilitates our working and allows us to be connected to our own database which is built-in
progress as seen below

Figure 55: Database Connection

then we define some functions which allow us to get needed information from the database as you
will see in the figures below

Figure 56: Queries Part 1

Figure 57: Queries Part 2

And now we can say that everything is done regarding the dash plotly part in our project.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:step004.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:database_connection.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:functions001.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:functions002.png

2024/05/17 08:57 37/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

5. Dynamic pivot and Dash Plotly

In the representation of the second map presented so far, which contains the last measurements for
each device, only the last filling levels are taken into account. All other measured values are not
considered. In order to be able to display all measured values and also new values based on new
sensors, two basic requirements must be met. First, the measured values must be aggregated and
then pivotoized. In the second point, it must be ensured that if a measurement type is added, this is
also dynamically taken into account in the pivoted representation.

After an intensive research we have found a prescribed function which is able to fulfill our
requirements with few restrictions. The original function which can also be found under the link in the
last section creates temporary tables which are deleted after execution. In our approach we have
changed this point. A table is created and based on this table a view was created.6 parameters are
passed. The first parameter is the name of the new view. The second parameter is the query used for
the table of the view. The third parameter contains columns that represent the reference columns
that will be used for pivoting. New columns are specified by using the fourth parameter. The last two
parameters define the content which can be found in the new columns and it is also possible to define
a order for all columns. The only disadvantage is that the table used for the pivotized view has to be
deleted every time the function is called, the same is true for the view.

Dash Plotly had to be adapted as well. Every time the map is updated for the latest readings, the
function must also be called to create a new table and view. In our case it is the function 'db_exec'.

Figure 58: Funtion db_exec

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:db_exec.png

Last update: 2022/03/09 20:42 emrp2021:start https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

https://wiki.eolab.de/ Printed on 2024/05/17 08:57

The function has no parameters but serves to call the original function 'colpivot' with the parameters.
The nesting of the functions was done because the specification of the parameters in Python is very
complex.

Figure 59: Call of the function db_exec

As a result, it is now possible to call up the last measured values for each device in a pivoted manner,
instead of having to decide on a measurement type as in the previous version, it is now possible to
call up the last date and the corresponding measurements for all devices.

Figure 60: last measurement per device

In order for it to work, all columns must always be displayed, instead of defining only some columns
statically, as was done in the previous version.

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:dp_include_function.png
https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:all_measurements.png

2024/05/17 08:57 39/39 Environmental Monitoring Research Project 2021

HSRW EOLab Wiki - https://wiki.eolab.de/

Figure 61: choose all columns

6. Links and Tutorials

Mix-Playlist about different topics:
https://www.youtube.com/playlist?list=PL2SRmCaIeDVibo6IUItyKcmDCH955hqAT
Link for ttn: https://www.thethingsnetwork.org/
SQL-Querries (Postgresql) in Node-Red:
https://flows.nodered.org/node/node-red-contrib-postgresql/in/MFnap-qr-MJE
TTN, MQTT Node-REd: https://www.thethingsindustries.com/docs/integrations/mqtt/
dynamic pivoting using Postgresql PL/PGSQL: https://github.com/hnsl/colpivot

From:
https://wiki.eolab.de/ - HSRW EOLab Wiki

Permanent link:
https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

Last update: 2022/03/09 20:42

https://wiki.eolab.de/lib/exe/detail.php?id=emrp2021%3Astart&media=emrp2021:choose_all_columns.png
https://www.youtube.com/playlist?list=PL2SRmCaIeDVibo6IUItyKcmDCH955hqAT
https://www.thethingsnetwork.org/
https://flows.nodered.org/node/node-red-contrib-postgresql/in/MFnap-qr-MJE
https://www.thethingsindustries.com/docs/integrations/mqtt/
https://github.com/hnsl/colpivot
https://wiki.eolab.de/
https://wiki.eolab.de/doku.php?id=emrp2021:start&rev=1646854921

	Environmental Monitoring Research Project 2021
	Student Pages
	1. Problem description
	2. Methods and Tools
	3. Concept
	4. Implementation
	4.1 Prototype and data transfer
	4.1.1 TTN
	4.1.2 relevant libraries and sketches
	4.1.3 Embedded programming

	4.2 Implementation in Node-Red
	4.2.1 "Theoretical" test with 3 gateways
	4.2.2 real prototype

	4.3 Datamodel
	4.3.1 Tables
	4.3.2 Views and Trigger

	4.4 Dash Plotly

	5. Dynamic pivot and Dash Plotly
	6. Links and Tutorials

