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PEER-REVIEWED RESEARCH

6	 Introduction
Jerome Workman, Jr.
This issue is a compilation of five peer-reviewed articles on the combined application 
of UV-vis-NIR spectral data with advanced chemometrics.

7	 Rapid Identification of Wood Species Based on Portable 
	 Near-Infrared Spectrometry and Chemometrics Methods

Yong Hao, Qiming Wang, and Shumin Zhang
Classification and identification of different wood species are demonstrated  
using a portable near-infrared spectrometer, combined with four spectral pretreat-
ment methods and three pattern recognition methods. Additional chemometric 
tools were used for comprehensive evaluation of classification model accuracy  
and complexity.

14	 Rapid Quality Discrimination of Grape Seed Oil Using an 
	 Extreme Machine Learning Approach with Near-Infrared 
	 (NIR) Spectroscopy

Yang Li
Given that grape seed oil has shown beneficial effects for consumers, there is a 
interest in measuring oil quality and potential adulteration. This study demonstrates 
an effective near-infrared (NIR) spectroscopy method, using a series of machine 
learning approaches for wavelength variable selection, to rapidly discriminate grape 
seed oil adulteration.

21	 Model for Retrieving Leaf Chlorophyll Using the Wavelet 
	 Analysis Algorithm with the Prospect Radiative Transfer 
	 Model and Vis-NIR Spectra

Feifei Xie, Lin Sun, Jie Wang, and Fengzhu Liu
Spectral reflectance is a non-destructive method that is applicable to remote sens-
ing and may be used to measure the chlorophyll content in a crop, which indicates 
the photosynthetic capacity, growth cycles, and degrees of stress (such as disease, 
insect infestation, and heavy metal stress) on plant ecosystems. This vis-NIR  
spectral reflectance method measures leaf chlorophyll using a wavelet analysis 
algorithm approach.

30	 Inversion of Low-Grade Copper Mining Areas Based on Spectral
	 Information and Remote Sensing Data Using Vis-NIR

Dong Xiao, Hongfei Xie, Yanhua Fu, and Feifei Li
Depletion of modern mineral resources due to continuous exploitation and utilization 
makes it economically necessary to quickly identify the locate sources of low-grade 
ore. Here, we propose a vis-NIR remote sensing method to determine copper  
content in mining areas as well as to measure the environmental impact of surface 
mining methods.

38	 Simultaneous Detection of Nitrate and Nitrite Based on UV 
	 Absorption Spectroscopy and Machine Learning

Hang Zhang, Qiong Wu, Yonggang Li, and Sha Xiong
Regulations have been imposed to set legal limits of nitrate and nitrite in water 
worldwide. In this study, a highly accurate and optimized ultraviolet (UV) spectros-
copy method is proposed to simultaneously monitor nitrate and nitrite for rapid 
determination and continuous monitoring in environmental water applications.
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From the Editor
Editorial Advisory Board

Advances in UV-Vis-NIR Spectroscopy:  
A Peer-Reviewed Special Issue

W
e present this special issue of Spectroscopy on ultraviolet (UV), visible (vis), 
and near-infrared (NIR) spectroscopy. This special issue features five specially 
selected and peer-reviewed papers that highlight exciting and important 

new developments in the potential of laboratory and remote sensing, combined 
with chemometric methods, to the application of UV-vis-NIR spectral data. Combin-
ing UV-vis-NIR spectra data and chemometrics provides a set of powerful analytical 
tools capable of discriminant analysis, classification, identification, and quantitative 
analysis for a variety of important applications. The UV-vis-NIR spectral regions reveal 
the details of electronic and molecular information for solid, liquid, and gas phases 
for natural and synthetic materials. The advantages of these spectral regions often 
include little or no sample preparation, capabilities for remote sensing, and rapid data 
acquisition and analysis. When multipurpose machine learning and other chemomet-
ric approaches are used for data analysis, the results can be surprising and dramatic. 
Many of these papers often include detailed chemometric terms and equations and 
we hope you will enjoy exploring these data analysis methods for your own use. The 
selected papers for this digital issue of Spectroscopy include the specific aspects of 
spectral data collection, data preprocessing, and chemometric model development. 

Our first paper demonstrates classification and identification of different wood species 
using a portable near-infrared spectrometer, combined with four spectral pretreatment 
methods and three pattern recognition methods. Additional chemometric tools are used 
for comprehensive evaluation of classification model accuracy and complexity. 

In the second paper, an effective NIR spectroscopy method is described, using a series 
of machine learning approaches for wavelength variable selection, to rapidly discriminate 
grape seed oil adulteration. Grape seed oil has shown beneficial effects for consumers 
as a dietary supplement, and there is now an interest in measuring grape seed oil for oil 
quality and potential. 

In our third selected paper, a vis-NIR spectral reflectance method is proposed that 
measures leaf chlorophyll using a wavelet analysis algorithm approach. Here, spectral 
reflectance is shown as a non-destructive method that is applicable to remote sensing for 
chlorophyll content in a crop. Measured chlorophyll content is a recognized indicator for 
photosynthetic capacity, growth cycles, and degrees of stress on plant ecosystems. 

Our fourth paper proposes a vis-NIR remote sensing method to determine copper 
content in mining areas as well as inferred measurement of the environmental impact of 
surface mining methods. This analytical method is important due to depletion of modern 
mineral resources from continuous exploitation and utilization, making it economically 
necessary to quickly identify and locate sources of low-grade copper ore. 

In the final paper of this edition, a highly accurate and optimized UV spectroscopy 
method is proposed to simultaneously monitor nitrate and nitrite for rapid determination 
and continuous monitoring in environmental water applications. Recent regulations have 
been imposed to set legal limits of nitrate and nitrite in water worldwide, making accurate 
measurements of these analytes an important water quality analysis requirement.

Jerome Workman, Jr. 
is the senior technical editor 

of LCGC North America  
and Spectroscopy,  

jworkman@mjhlifesciences.com

mailto:jworkman@mjhlifesciences.com
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Rapid Identification of Wood 
Species Based on Portable  
Near-Infrared Spectrometry  
and Chemometrics Methods 

In this paper, a portable near-infrared 
(NIR) spectrometer, combined with 
chemometrics methods, was used for 
rapid identification of 20 wood species.  
Four spectral pretreatment methods, in-
cluding Norris-Williams smooth (NWS), 
standard normal variate (SNV), multipli-
cative scatter correction (MSC) and Sav-
itzky-Golay 1st derivative (SG 1st-Der), 
were adopted for noise reduction and 
information enhancement of near-infra-
red (NIR) spectra of wood. Three pattern 
recognition methods, including principal 
component analysis (PCA), partial least 
squares discriminant analysis (PLS-DA), 
and support vector machine (SVM), were 
used to cluster analysis of sample spec-
tra. The competitive adaptive reweighted 
sampling (CARS) method was proposed 
to select effective wavelengths (EWs). 
The Bayesian information criteria (BIC) 
value was used for comprehensive evalu-
ation of model accuracy and complexity. 
Compared with PLS-DA models, both the 
correction set and test set of the SG 1st-
Der-SVM model and the SNV-SVM model 
have obtained 100% correct recognition 
rates (CRRs). The CARS method shows the 
SG 1st-Der-SVM model having the smallest 
BIC value, and the model was optimal. 

Yong Hao, Qiming Wang, and Shumin Zhang

Classification and identification 
of wood species is an important 
part of wood processing and 

trade. Different wood species have dif-
ferent physical or chemical properties, 
which is of great significance to entry-
exit inspection, quarantine departments,  
and furniture enterprises. Conventional 
wood species identification meth-
ods include microscopic cell structure 
and surface characteristic analysis.  
The microscopic cell structure analysis 
method needs microscope and wood 
slices processing, and the analysis pro-
cess is complex (1). The surface charac-
teristic analysis method is mainly used 
to analyze the color and texture of wood 
surfaces by means of image and spectral 
analysis. Image analysis mainly includes 
image acquisition, image processing 
and image recognition, and the identifi-
cation process requires expertise and is 
also complex (2). In the image acquisition 
stage, a high-resolution camera and light 
source are necessary to ensure the clarity 
of the image. Complex image pretreat-
ment methods are needed to enhance 
and extract the image features. Image 
recognition needs a better template or 
model to ensure its accuracy.

In recent years, with the develop-
ment of optical instruments, near-
infrared (NIR) spectroscopy has been 
widely used in qualitative and quantita-
tive analysis of physical and chemical 
properties of substances because of its 
fast, nondestructive, and simple opera-
tion. The NIR spectrum is electromag-
netic energy with a wavelength range 
of 780–2500 nm. NIR spectra mainly 
detect overtones and combination 
bands of the substance; and different 
bonds, including C-O, O-H, C-H, S-H,  
and N-H, have different spectral absorp-
tion. NIR applications have increased 
in the agricultural and forest products 
industries (3,4). Thayna and associates 
used NIR and partial least squares (PLS) 
to predict total anthocyanins content 
(TAC) and total phenolic compounds 
(TPC) in intact wax jambu fruit (5).  
Chen and associates have used NIR and 
PLS to analysis main catechins contents 
in green tea (6). Luna and associates 
used NIR and multivariate classification 
to discriminate soybean oil samples into 
non-transgenic and transgenic types (7). 
Zhou and associates used NIR and che-
mometrics to separate a green hem-fir 
mix online (8). 

PEER-REVIEWED RESEARCH
Spectroscopy papers have undergone a double-blind peer review process and are available on our open-access website.
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The chemical composition of wood is 
very complex. Many experimental stud-
ies have shown that cellulose, hemicel-
lulose, lignin, and other organic mole-
cules (such as glucose, fructose, pinitol,  
sorbitol, and inositol) are contained in 
wood, and these substances all have 
spectral response in the NIR region (9–15).

In this paper, a portable NIR spec-
trometer combined with chemomet-
rics methods is used for qualitative 
identification of 20 wood species.  
Different spectral pretreatment and pat-
tern recognition methods are used to 

optimize the optimal recognition model,  
and predict attribution of an unknown 
wood species.

Materials and Methods
Samples
For this study, 20 wood species were 
collected from Zhang Jiagang Entry-
Exit Inspection and Quarantine Bureau 
of China. There were 80 samples from 
80 different trees per type of wood,  
and each sample was made with dimen-
sions of 21 × 10 × 2 cm3 (length × width 
× height) according to the national stan-

dard method (16) for spectral collection 
and analysis. Therefore, a total of 1600 
samples were used in the experiment.

To build the discriminant model and 
evaluate the accuracy of the model,  
80 samples of each kind of wood were 
divided into calibration sets and test 
sets, with the ratio of 3:1 using the Ken-
nard Stone (KS) method (17,18). Thus, a 
total of 1600 wood samples, of which 
1200 samples were used to build the 
model and validation model, and the 
remaining 400 samples were taken as 
a test set for external test. To estab-
lish a multi-classification model, the 20 
wood species were named 1 to 20 in 
sequence. The corresponding relation-
ship between attribute values and wood 
species is shown in Table I.
 
NIR Spectra Acquisition 
The NIR spectra were acquired by a 
portable spectrometer (MicroNIRS, 
VIAVI Corporation) with the spectral 
region of 900–1700 nm. The MicroNIRS 
instrument consists of a linear vari-
able filter (LVF) dispersing element fo-
cused directly onto a 128-pixel linear 
indium gallium arsenide (InGaAs) array  
detector, and two tungsten light bulbs  
as the sources (19).

The NIR spectra acquisition sys-
tem was set up based on a computer 
(with self-developed software based 
on Matlab R2014a) and the MicroNIRS 
spectrometer. For each wood sam-
ple, three diffuse reflectance spectra 
were measured randomly at differ-
ent locations, with a temperature of 
25±2 °C and humidity of 57±5% RH.  
Then, the mean spectrum of each wood 
sample is calculated and stored for 
the subsequent spectral analysis and  
species classification.

Traditional detection methods re-
quire multiple treatments of the wood, 
including cutting, softening, slicing, 
dyeing, dehydrating, and transparency 
processing. Pictures of the processed 
wood samples are then taken, or the 
samples may be observed through a 
microscope, and the characteristics and 
microstructure of the wood samples are 
compared with the standard wood to 

TABLE I: The corresponding relationship between attribute values and  
wood species

Attribute 
Values Wood Species Attribute Values Wood Species

1 Pcricopsis elata 11 Hymcnaca spp

2 Prcca sitchcnsis 12 Canarium spp

3 Lovoa spp 13 Dalbcrgia melanoxylon

4 Aglaia spp 14 Mansonia altissima

5 Burckella spp 15 Ocotea rodiei

6 Guibourtia spp 16 Didelotia spp

7 Intsia spp 17 Khaya spp

8 Manikara spp 18 Brachystegia laurentii

9 Microberlinia spp 19 Swietenia spp

10 Afzelia africana 20 Tabebuia spp

TABLE II: The results of classification for wood species based on the PLS-DA model

Methods LVs
CRR (%)

Calibration Set Test Set

Origin 17 97.50 98.25

NWS 16 96.75 92.75

SNV 16 96.42 98.75

MSC 17 97.17 98.50

SG 1st-Der 17 97.08 97.50

TABLE III: The results of classification for wood species based on the SVM model

Methods C/g
CRR (%)

Calibration Set Test Set

Origin 32.00/0.50 97.50 97.25

NWS 32.00/0.35 97.25 97.00

SNV 22.63/1.41 100.00 100.00

MSC 16.00/1.41 100.00 94.50

SG 1st-Der 22.63/0.13 100.00 100.00
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determine the type of wood being studied. The proposed 
wood type identification system is only required to collect 
the spectrum of the wood, and determine the type of wood 
by using chemometric analysis.

Methods
NIR spectra are often accompanied by noise for some factors, 
mainly because of the instability of the light source or detector 
due to temperature and power supply fluctuations, spectral 
acquisition modes and sample state variations, and other fac-
tors. Therefore, spectral pretreatment is very important for NIR 
analysis. Four spectral pretreatment methods, including Norris-
Williams smooth (NWS) (20), standard normal variate (SNV) (21), 
multiplicative scatter correction (MSC) (22) and Savitzky-Golay 
1st derivative (SG 1st -Der) (23), are used for noise reduction and 
information enhancement of the NIR wood spectra.

The NIR spectra are highly overlapping, so it is necessary 
to use chemometrics methods, such as principal component 
analysis (PCA), partial least squares discriminant analysis 
(PLS–DA) and support vector machines (SVM), for spectral 
interpretation. PCA is a method for dimensionality reduction 
for high-dimensional data by decomposing linear combi-
nation of origin variables into a few principal components 
(24,25). PCA was used to observe the samples spectral 
spatial distribution. PLS–DA and SVM are used to build  
discriminant models. 

For the PLS–DA method, the latent variable (LV) is an 
important optimization parameter (26,27), and a reason-
able number of LV can make full use of spectral information 
and filter out noise (28). The Monte Carlo cross-validation 
(MCCV) method, proposed by Picard and Cook (29), is used 
to determine the number of LV. MCCV is a simple and effec-
tive method that can reduce the risk of model overfitting.  
The repeated MCCV criterion is defined in equation 1. When 
the MCCV is the smallest, the m is the number of LV:

MCCVnv(m)=       ∑||ysv(i)  ysv(i)||21
Nnv

N

i=1
                    [1]

where y and  y  are the true and predicted values of the sam-
ples, nv is the size of the test sample, and repeat the proce-
dure N times (i = 1, 2, ..., N).

SVM is based on the statistical learning theory and struc-
tural risk minimization. The basic principle of SVM is to find 
the optimal separation hyperplane to make the classification 

TABLE IV: The BIC values of the model calibration set and test set

Methods EWs C/g
CRR (%)

CRR (%) BIC CRR (%) BIC

SG 1st-Der- CARS-SVM 22 5.66/5.66 100 311.96 100 263.62

SNV-CARS-SVM 48 22.63/4.00 100 680.65 100 575.18
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1000 1200 1400 1600
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FIGURE 1: NIR absorbance spectra of wood samples.
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problem linearly separable (30). Assum-
ing a sample set:

S = {(xi,yi)
n  |xiϵR

N,yiϵ{-1,1},i=1,2,...,l}i=1
 

[2]

Among them, xi is the sample data, 
and yi is the sample category. The opti-
mization problem is written as:

s.t.{
min ||w||2 + C∑ζi (ζ i ≥ 0)

(i = 1,2,...,n)

1
2
yi (wxi+b) ≥ 1– ζ i

C ≥ 0

n

i=1
[3]

where w represents the weight vector 
and b represents the bias vector. C is 
the penalized regression error. In order 
to ensure the accuracy of classification, 
introduce a relaxation factor  ≥ 0.

As the classifier is a linear function, 
it is necessary to ensure that the clas-
sification hyperplane can accurately 
distinguish the two types of samples 
while also ensuring the maximum clas-
sification interval. For the case where 
the classifier is a nonlinear function, it is 
necessary to map the nonlinear sepa-
rable problem in the low-dimensional 
space to the high-dimensional space 

by introducing the kernel function, and 
then find the optimal classification hy-
perplane in the high-dimensional space. 

The radial basis function (RBF) is used 
as the kernel function, and expression of 
RBF is shown in equation 4 (31). Two pa-
rameters, penalized regression error (C) 
and gamma (g), need to be optimized 
to get the best analysis model, and the 
grid search (GS) method is employed to 
select optimal C and g. The expression 
of g is shown in equation 5:

k(xi,x) = exp(–               )||xi – x||
2σ2

  [4]

g = 1
2σ2

  [5]

 
where xi is the training sample, x is the 
sample to be predicted, and σ is the 
width of the kernel function.

Competitive adaptive reweighted 
sampling (CARS) is a characteristic 
wavelength selection method based on 
Monte Carlo sampling and PLS regres-
sion coefficients (32). It can overcome 
the combinatorial explosion problem 
in variable selection to a certain ex-
tent, filter out an optimized subset of 
variables, and improve the predictive 
ability of the model. Establish the cor-
responding PLS model through the 
correction set samples selected by 
Monte Carlo sampling, and calculate 
the weight of the absolute value of the 
wavelength regression coefficient in 
this sampling. The larger the weight 
value, the greater the contribution of 
the variable to the establishment of 
the model. Remove the wavelength 
variables with small absolute values,  
and the number of variables is de-
termined by the exponential decay 
function (EDF) (33). The remaining 
wavelength variables adopt adaptive 
reweighted sampling to select multi-
ple subsets of wavelength variables to 
establish a PLS model. The subset of 
the model with the smallest root mean 
square error of cross-validation (RM-
SECV) is the selection of characteristic 
wavelength combinations. The calcula-
tion process is as follows:
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FIGURE 2: The NIR spectra of wood samples employing the different pretreat-
ment methods: (a) NWS, (b) SNV, (c) MSC, and (d) SG 1st-derivative.
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T = XW                             [6]

y = Tc + e = XWC + e = Xb + e         [7]

where X is the spectral data of the sample 
and y is the attribute value of each sample. 
T is the score matrix of X, which is a linear 
combination of X and W; c is the regres-
sion coefficient vector of y against T by 
least squares; and e is the prediction error. 

The method used in the paper was run 
under Matlab R2014a.

Model Evaluation
The correct recognition rate (CRR) is 
used to evaluate the accuracy of the 
model. Good models have relatively 
higher CRR. The formula is as follows:

CRR =    ×100%
p
t [8]

where p represents the number of 
correc tly identif ied samples, and 
t  represents the total number of 
samples.

To compare the best performing 
models, the Bayesian information cri-
teria (BIC) (34) is used to determine 
a satisfactory compromise between 
model accuracy and model simplic-
ity. The calculation formula of BIC is 
shown in equation 9:

BIC = –2nlnCRR + ln(n) × 2k             [9]

In the formula, CRR is the accuracy 
of the model, n is the number of sam-
ples, and k is the number of variables 
to build the model. The model with the 
minimum BIC is optimal.

Results and Discussion
NIR Spectra of Wood Samples 
Figure 1 shows the NIR spectra of a total 
of 200 wood samples randomly selected 
—10 samples from each type of wood. 
The absorbance spectra range was from 
0.6 to 2.2 AU. The absorption peak ap-
pears at a wavelength of 1100 nm; this is 
because of the in-plane bending vibra-
tion of the aromatic C-H and the tensile 
vibration of the secondary alcohol C-O 
in the wood. Each spectrum is smooth, 
and the contour trends are consistent. 

However, when multiple wood spectra 
are plotted together, the spectra are 
interlaced and cannot be resolved intu-
itively. Further preprocessing and pat-
tern recognition methods are required 
for spectral analysis. 

Figure 2 shows the NIR spectra of 
wood samples employing the differ-
ent pretreatment methods, includ-
ing NWS, SNV, MSC, and SG 1st-Der.  
Different woods show different spec-
tral characteristics af ter spectral 
pretreatment due to the fact that 
NIR spectra signature is strongly af-
fected by the growth environmental 
conditions and texture of wood (35).  
Nevertheless, it is not possible to ob-
serve significant visual differences be-
tween the spectra.

PCA Result of Wood Species
PCA was applied to find the characteris-
tics of each wood species according to 
the 1600 original spectra. Every wood 
has many characteristics that can be 
measured in spectra. PCA can select the 
important characteristics that can clas-
sify them among the 20 species of wood 
according the spectra, and reduce di-
mensionality based on decomposing 
linear combination of origin variables 
into a few principal components (36). 

The distribution diagram of the first 
three principal components of the 
calibration wood samples is shown in 
Figure 3. The cumulative contribution 
rate of the first three principal com-
ponents reached 99.8%. In Figure 3,  
we use different colored points to rep-

The number of LVs 

CRR of test set
CRR of calibration set

100

80

60

40

20

0

C
R

R
 (%

)

0 5 10 15 20

FIGURE 4: The trend chart of CRR changing with LVs in the calibration and 
test set.

Sample numbers

20

15

10

5

0

C
at

eg
o

ry
 la

b
el

s

0 100 200 300 400

CRR=98.25% Actual
Correct prediction
Wrong prediction

FIGURE 5: The scatter plot of the real attribute value and the predicted value 
of PLS-DA model for test set samples.



12  Advances in UV-Vis-NIR Spectroscopy   December 2021 www.spectroscopyonline.com

PEER-REVIEWED RESEARCH

resent 20 types of wood, and there 
are 80 samples of each kind of wood.  
As shown in the figure, the sample 
points representing different wood 
species are interlaced with each other. 
It can be also be seen in the figure 
that PCA cannot clearly classify the 20 
wood species in the form of a simple  
classification plane. 

PLS–DA Model Analysis of Wood Species
PLS–DA models for identification of 
wood species were developed with 
origin and preprocessing spectra. 
MCCV was used to select the opti-
mal number of LVs. For the MCCV 
method, 1200 samples were used for 
random sampling modeling, and 840 
were selected for modeling each time, 
with the remaining 360 used for model 
verification. The number of random 
cycles was set to 500, and the model 

was evaluated using the CRR. The or-
dinate of Figure 4 is the average of CRR 
of 500 cycles. For origin spectra PLS–
DA model, when LVs are 17, the curves 
of CRR tend to be flat, and the stan-
dard deviation (SD) of 500 operations 
is small for calibration and test sets. 
There is no risk of overfitting for mod-
els with approximately equal value of 
CRRs for both calibration and test sets.  
The results of classification for wood 
species based on PLS–DA models with 
origin and preprocessing spectra are 
shown in Table II, where it can be seen 
that the origin spectra PLS–DA model 
was optimal with 17 LVs, and the CRRs 
were 97.50% and 98.25% for calibration 
and test sets, respectively. 

Figure 5 shows the scatter plot of 
the real attribute value and the pre-
dicted value of the origin spectra 
PLS–DA model for test set samples. 

The square and triangle represent the 
true attribute values of the test set 
and predictive attribute values of the 
optimal PLS–DA model, respectively. 
The coincidence degree of square and 
triangle reflects the precision of the 
model. The higher the coincidence 
degree in the scatter plot, the better 
the prediction accuracy of the model; 
the red triangle represents the correct 
prediction, and the blue triangle repre-
sents the wrong prediction. As shown 
in Table II, the value of CRR was 98.25%. 
It clearly observed that seven samples 
showed incorrect validation results in 
Figure 5. Among them, two samples of 
No. 4 (Aglaia spp) wood were wrongly 
predicted to be No. 17 (Khaya spp) 
sample, four samples of No. 12 (Canar-
ium spp) wood were wrongly predicted 
to be No. 4 sample, and one sample of 
No. 14 (Mansonia altissima) wood was 
wrongly predicted to be No. 5 (Burck-
ella spp) sample. As to reasons behind 
the wrong prediction of wood, a possi-
ble reason is that the absorption of the 
double frequency and the combined 
frequency of the hydrogen-containing 
groups of the two woods is similar. 

SVM Model Analysis of Wood Species
The regularization constant C and the 
kernel function parameter g are the key 
parameters that affect the performance 
of the SVM. The basic idea of the GS 
method is an exhaustively search for 
optimization parameters; arrange 
and combine the possible values of 
each parameter, list all possible com-
binations to generate grid, and then 
each combination is brought into the 
model to verify its performance. Finally,  
the parameter values that make the 
model performance optimal are taken 
as the best parameters. 

SVM models were developed with 
origin and pretreated spectra. Table 
III summarizes the modeling results.  
From Table III, it is possible to observe 
that SG 1st-Der and SNV pretreatment 
promoted the best SVM model, with 
100% CRR for calibration set and test set.  
According to the prediction accuracy, 
the prediction result of the SVM model 
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was better than the PLS–DA model, 
proving that the kernel introduced by 
SVM was a good predictor of the nonlin-
ear relationship between spectral data 
and wood species.

Establishment of CARS–SVM Model
To build a more parsimous discrimi-
nant model, a CARS (37,38) method 
was proposed to remove redundant 
variables with collinearity and select 
effective wavelengths. The number 
of repeated sampling of the CARS 
method was set to 50, and the five-
fold cross-validation method was 
used to calculate the RMSECV. At the 
beginning of the EDF, as the number 
of sampling variables was eliminated, 
the RMSECV decreased, and then the 
number of sampling iterations con-
tinued to increase rapidly because of 
the decrease of effective wavelengths 
(EWs). At the end, interactive verifica-
tion was used to select the smallest 
subset of RMSECV as the optimal 
variable combination. It can be con-
cluded in Figure 6 that, when the 
number of sampling runs of the SG 
1st-Der-CARS–SVM model was 9, the 
RMSECV reaches the minimum (Figure 
6a), and 22 EWs were selected. When 
the number of sampling runs of the 
SNV–CARS–SVM model was 9, the 
RMSECV reaches the minimum (Fig-
ure 6b), and 48 EWs were selected. 
Figure 7a was the distribution map of 
22 EWs selected by the SG 1st-Der-
CARS–SVM model, and Figure 7b was 
the distribution map of the 48 EWs se-
lected by the SNV–CARS–SVM model.  
The red line represents a spectrum, 
and the black circle represents EWs. 
From the figure, EWs are mainly dis-
tributed between 1200–1400 nm (The 
point inside the blue circle in Figure 7). 
In this band, the spectrometer intro-
duces the least external interference in 
the process of collecting spectral data, 
and contains the most effective data. 

In the process of establishing a dis-
criminant model, choosing different 
combinations of variables would result 
in different models, and the values 
corresponding to the information cri-

teria would also change. In this study, 
the calibration set and test set CRR 
of the SG 1st-Der-CARS–SVM model 
and SNV–CARS–SVM model were 
both 100% (Table IV), but the variable 
combinations of the two models were 
different. Therefore, the correspond-
ing BIC was not the same. As shown 
in Table IV, it can be concluded that 
the BIC value of the calibration set and 
the test set of the SG 1st-Der-CARS–
SVM model were the smallest. The SG 
1st-Der-CARS–SVM model used fewer 
variables for modeling. While ensur-
ing the accuracy of model prediction, 
the model was simplified to make the 
model better.

Conclusion
In this study, 20 wood species were 
classified successfully based on the 
portable NIR spectra with chemomet-
rics methods of PLS–DA and SVM. 
Compared to PLS–DA, the SG 1st-
Der-SVM model and the SNV–SVM 
model both obtained 100% CRRs in 
the calibration set and test set for clas-
sifying 20 kinds of wood. The CARS 
method can effectively filter out EWs,  
reduce the invalid variables in the mod-
eling, and simplify the SVM model.  
By comparing the calculated value of 
the models, the BIC value of the SG 
1st-Der-CARS–SVM model was the 
smallest. The results show that the SG 
1st-Der-CARS–SVM model is the best.  
A portable NIR spectrometer com-
bined with SVM method can be used 
for fast identification of wood species 
with a higher recognition rate.
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Rapid Quality Discrimination of 
Grape Seed Oil Using an Extreme 
Machine Learning Approach with 
Near-Infrared (NIR) Spectroscopy

In this paper, an effective identification 
method of wavelength variable selec-
tion to rapidly discriminate the grape 
seed oil adulteration by near-infrared 
(NIR) spectroscopy is investigated. 
The extreme learning machine (ELM) is 
employed to build a stable and accurate 
model, and a firefly algorithm combined 
with a successive projections algorithm 
(FA–SPA) is developed to eliminate re-
dundant wavelengths (The model used 
throughout is called FA–SPA–ELM).  
The comparison among different 
models—the partial least squares dis-
criminant analysis (PLS–DA) model, 
the support vector machine (SVM) 
model, the least squares support 
vector machine (LS–SVM), and the 
FA–SPA–ELM model—demonstrates 
that the wavelength number of the 
FA–SPA model can be effectively re-
duced with a wavelength variable of 
17, and the model of FA–SPA–ELM 
presents the excellent predictive ca-
pability. The experimental results 
show that the proposed novel method 
could be used to identify adulterated 
grape seed oil quickly, effectively,  
and nondestructively.

Yang Li  

Grape seed oil contains high con-
tent of lipids and bioactive com-
pounds, such as vitamin E, linoleic 

acid, and proanthocyanidins, among 
other components (1,2). The total 
proanthocyanidins of grape seed oil 
have been demonstrated to offer ben-
efits for antioxidant, anti-inflammatory,  
antihypertensive, and hypocholes-
terolemic activities (3,4). Additionally, 
grape seed oil has effect on anti-aging, 
radical-scavenging properties, and the 
protection against DNA damage (5). 
The results indicate that grape seed 
oil is a kind of senior health edible oil 
that has high nutrition health value and 
pharmacotherapy efficacy. However, 
adulterated grape seed oil is some-
times sold with other cheap edible oils 
by some producers so as to earn larger 
profits, thus disturbing the market and 
causing damage to the health of con-
sumers. Therefore, it is of great value to 
employ rapid detecting techniques to 
discriminate the quality of grape seed oil.

Conventional methods detecting 
the quality of edible oils are mainly 
based on high performance liquid 
chromatography (HPLC), gas chroma-
tography (LC), and thin-layer chroma-

tography; however, these approaches 
are expensive, time-consuming, and re-
quire a plentiful supply of samples (6).  
Near-infrared (NIR) spectroscopy pri-
marily measures the molecular vibra-
tions of C-H, O-H, and N-H. Among 
existing techniques, the NIR spectros-
copy technique has been widely ap-
plied to the nondestructive and rapid 
qualitative and quantitative detection 
of edible oils (7,8). Therefore, this re-
search is intended to provide a poten-
tial reference method for detecting 
adulterated grape seed oil.

However, the full spectrum data 
measured by NIR contains too much 
redundant information between adja-
cent wavelength bands, causing some 
challenging problems regarding the 
identification of relevant and effective 
information, as well as the accuracy of 
the model. Wavelength selection tech-
niques aim at eliminating the uninfor-
mative and interferential wavelength 
signals, while simultaneously obtain-
ing an optimal subset of informative 
characteristic wavelength variables 
from the NIR spectrum (9). Among all 
different types of wavelength selection 
techniques, the swarm intelligence op-
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timization algorithms are more interest-
ing, because they simulate the social 
behavior of animals and insects to ac-
quire the shortest path between a food 
source and their nests. Compared with 
the conventional optimization tech-
niques, these techniques employ a sto-
chastic, probabilistic, and crowd search 
process rather than a single solution.  
However, the number of the wave-
length selected is still large, and it is 
easy to fall into a local optimal point 
through the swarm intelligence opti-
mization algorithms. Hence, a genetic 
algorithm with a successive projections 
algorithm (GA–SPA) (10), a uninforma-
tive variable elimination with successive 
projections algorithm (UVE–SPA) (11), 
and a successive projections algorithm 
with particle swarm optimization (SPA–
PSO) (12) are proposed to assist in rec-
tifying these shortages, and to build a 
stable model using fewer wavelengths.

A high-quality, high-accuracy, and 
stable model is required for the quali-
tative analysis of adulteration by NIR 
spectroscopy. For the spectroscopy-
based classification, chemometri-
cians have developed many valuable 
algorithms, such as the partial least 
squares discriminant analysis (PLS–
DA) (13), the support vector machine 
(SVM) (14), and the least squares sup-
port vector machines (LS–SVM) (15). 
Specifically, an algorithm for single-
hidden layer feed-forward neural 
networks called an extreme learning 
machine (ELM) was proposed (16). 
Differing from the conventional learn-
ing algorithms that require adjust-
ing input weights and hidden layer 
biases, the ELM arbitrarily assigns 
input weights and hidden layer biases,  
and calculates the output weights by 
a generalized inverse method (17).  
It is reported that ELM brings a higher 
learning rate, predictive accuracy, and 
generalization performance (18). As a 
rapidly developed technology, a large 
number of applications of the ELM 
have emerged in recent years (19,20). 
On the other hand, the ELM combined 
with NIR to analyze the adulterated 
grape seed oils has not been reported.
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FIGURE 1: The flow chart of FA combined with SPA.

TABLE I: Comparison of different wavelength selection methods

Method The Number of 
Wavelengths RMSEC RMSEP

FA 710 0.093 0.146

SPA 120 0.112 0.231

FA-SPA 17 0.382 0.264
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In this paper, an ELM approach is 
proposed to demonstrate the fea-
sibility of the combination of NIR 
spectroscopy and the firefly algorithm 
combined with a successive projec-
tions algorithm ELM (FA–SPA–ELM) 
model in the quality of grape seed 
oil. NIR spectra is collected from 
grape seed oil blended with four 
kinds of different edible oils. FA–SPA 
is applied to optimize the character-
istic wavelength, and then the ELM 
is built to determine the adultera-
tion of grape seed oil. Moreover, the 
predictive per formance of ELM is 
evaluated by a comparison with the 
conventional modeling methods,  
including the PLS–DA model, the SVM 
model, and the LS–SVM model.

This paper also formulates the oil 
samples, the spectral data collection, 
and the methods used throughout, as 
well as provides the experimental com-
parison and results to verify the effec-
tiveness of the FA–SPA–ELM model. 

Materials and Methods
In this section, the mixing of oil samples, 
the collection of NIR spectra, and the 
partition of the samples are described 
in detail. The flow chart of wavelength 
selection, and the structure and appli-
cation of the ELM neural network in the 
research, are illustrated as well.

Oil Samples
The grape seed oil, soybean oil, pea-
nut oil, corn oil, and sunflower oil em-

ployed in this study were purchased at 
the local market. The grape seed oil 
was mixed with different amounts of 
soybean oil, peanut oil, corn oil, and 
sunflower oil to obtain the calibration 
and prediction set of 31 adulteration 
samples, respectively. These samples 
were prepared in volumetric flasks of 
200 mL. In the samples of the adulter-
ated grape seed oil, the volume con-
tent of the other four oils ranged from 
0 mL to 200 mL, with increments of  
5 mL, respectively.

Spectral Collection 
The spectra data were acquired by 
the measurement system consist-
ing of oil samples, the Fourier trans-
form near-infrared (FT-NIR) Antaris II 
spectrometer, and a laptop. The oil 
samples were put into the spectrom-
eter to measure spectral information.  
The spectral data were obtained by 
the spectrum information acquisition 
software, and saved as a .csv file (in-
cluding wavelength values and corre-
sponding absorbance data). Spectral 
measurement were executed at 25 °C 
and 60% relative air humidity. The ex-
perimental samples were packaged in 
10 mm quartz cuvettes. The spectra 
were scanned in the range of 10,000–
4000 cm-1, with the resolution of  
16 cm-1 and with 32 replicate scans 
every time. The spectrum of each 
sample were analyzed in triplicate, and 
the average value was taken as the NIR 
absorption spectrum of the sample.

In this study, 31 samples for each 
category were divided into a calibra-
tion set and a prediction set through 
the Kennard-Stone (21) algorithm.  
The calibration set of 21 samples for 
each category was employed to build 
the classification model, and the re-
maining 11 samples were used as a 
prediction set to evaluate the predic-
tion capability of the model. In the fol-
lowing sections, A1, A2, A3, A4, and 
A5 represent NIR data of pure grape 
seed oil, grape seed oil blended with 
different levels of soybean oil, pea-
nut oil, corn oil, and sunflower oil,  
respectively.
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FIGURE 3: PCA score plots (PC1, PC2, and PC3) for adulterated grape seed oil. 
Groups A1 through A5 are shown in different colored dots.
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Selection of Characteristic
Wavelength Variables
The full spectral data was weak, owing 
to the redundant wavelength informa-
tion. The redundant wavelength infor-
mation reduced computation speed 
and accuracy of prediction modeling. 
Therefore, a firefly algorithm (FA) was 
applied to screen out characteristic 
wavelength variables from the NIR 
spectrum in this work. FA is a swarm 
intelligence algorithm originally pro-
posed by Yang (22) simulating the so-
cial behavior of fireflies that use light to 
attract mates (23). Yang (24) formulates 
the following three idealized rules: 
(i) All fireflies are unisex, and attract 
each other; 
(ii) Attractiveness is related to their 
brightness; for any two flashing fire-
flies, the less brighter one will move 
towards the brighter one. However, the 
brightness can decrease as their dis-
tance increases. If no one is brighter 
than a particular firefly, it moves ran-
domly; and
(iii) The brightness of a firefly is deter-
mined by the objective function. 

The fitness function is defined as:

f =               = 1
N

N
j=1(yj – ŷj)

2∑
1

RMSEC
1

[1]

where RMSEC is root mean square 
error of calibration based on partial 
least squares (PLS) regression, N is 
the number of calibration set samples,  
yj, 1 ≤ j ≤ N is category labels of the oil 
samples in calibration set, and yj, 1 ≤ j ≤ N 
is predictive category labels through 
the PLS model.

However, the optimized character-
istic wavelengths by FA are still vast, 
and contain collinear interference. 
These wavelengths are time-consum-
ing to obtain, and unstable when used 
to establish classification models.  
The successive projections algorithm 
(SPA) is a forward selection method 
that uses vector projection analysis in 
the spectral matrix to minimize variable 
collinearity. SPA is used to extract ef-

ficient wavelengths further. The basic 
principle of SPA starts with one wave-
length incorporates another wave-
length at each iteration, until a speci-
fied number of wavelengths is reached. 
For each iteration, the combination of 
wavelength information is selected for 
constructing multiple linear regression 
models and calculating the RMSEC. 
When the value of RMSEC reaches 
a minimum and tends to be stable,  
the corresponding preferred wave-
length number is the optimal wave-
length combination. 

Figure 1 shows the flow of the char-
acteristic wavelength selection by FA 
combined with SPA, where p0 is the 
dimension of the spectral, Vsel is the 
wavelength variable matrix for the N 
calibration set and p1 wavelengths se-

lected by FA, and X is the wavelength 
variable matrix for N calibration set and 
p wavelengths selected by SPA.

The ELM Classification Model
The ELM classification model is a sim-
ple and practical single-hidden layer 
feedforward neural network proposed 
by Guangbin in 2006 (25). ELM can 
effectively overcome the issue of tra-
ditional neural networks, such as the 
complexity of training parameters, and 
the problem of local optimum. Here, 
there is N training spectra samples 
{X,Y} = {xj, yj}

N
j=1  to be employed to estab-

lish the classification model between 
the spectra and category labels, where 
xj is the measured spectra absorbance 
of the jth sample, and xj = [xj1, xj2,...,xjp}
T, xjk, and k = 1,…p are the selected 
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FIGURE 5: A plot of the 710 wavelengths selected by the FA algorithm.
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optimal wavelength by the firefly algo-
rithm combined with successive pro-
jections algorithm FA–SPA; yj = [yj1, 
yj2,...,yjq}T is the category labels of the 
j th sample, where q is the dimen-
sion of the category labels,yjk ϵ {0,1}, 
yjk = 1 means the spectral data is la-
beled as Class k. 

For the jth sample, the ELM clas-
sification model can be mathemati-
cally modeled as follows:

∑ βik g(wi xj+bi) = yjk,k =1,...q; j=1,...,N 
m

i=1

T [2]

where m is the number of the hidden 
nodes and g(x) is the activation function 
determined with sigmoid function, i = 1, 
2,…, m, wj is the input weight vector con-
necting input nodes with the hide node, 
bi is the hidden layer vector bias corre-
sponding to its hidden node, and βik is the 

output weight vector connecting the out-
put nodes with the hide node; w and b are  
assigned arbitrarily. 

For N samples, the equation [2] can 
be abbreviated as:

                     Hβ = T                           [3]

where  β = [β1  ...  βm]T;  βi = [βil  ...  βiq]
T;  T = [y1  ...  yN]T 

 

              

T and

 

              H=   [                                                ]g(w1 x1+b1 )  ...  g(wm x1+bm )

g(w1 xN+b1 )  ...  g(wm xN+bm)T T

T T

...... ... [4]

For given number of the hidden m, 
input weight w1, and the hidden 
layer biases bi is to estimate β such 
that the output least-squares error of 
the model is minimized. It is directly 
equivalent to solve the following  
optimization problem:

||H(w1,w2,...,wm,b1,b2,...,bm )β-T||=min||H(w1,w2,...,wm,b1,b2,...,bm )β-T||
β

[5]

where β  is the estimated value of β and 
its solution is:

β = H†T [6]

H† is the Moore-Penrose general-
ized inverse of the hidden layer output 
matrix H.

Given a calibration set, the sigmoid 
function g (x), and the hidden node 
number m (details see results and dis-
cussion), the ELM algorithm can be 
realized according to the following 
procedure:
Step 1: Generate input weight wi and 
the hidden layer biases bi randomly, 
i=1, 2, … , m.
Step 2: Calculate the hidden layer out-
put matrix H according to equation [4].
Step 3: Calculate the output weight ac-
cording to equation [6].

Results and Discussion
Spectral Analysis
Spectral data in the wavelength range 
from 1000 to 2300 nm are taken as the 
analytic spectral data. The spectrum 
of grape seed oil mixed with different 
vegetable oils and pure grape seed 
oil are shown in Figure 2. It can be ob-
served that the differences between 
the spectra are extremely small, and 
it is hard to make distinctions directly. 
However, when enlarged at a local 
position, for example, and the major 
spectral bands presented in 1660–1820 
nm and 2100–2200 nm, there is a dif-
ference in the spectrum of all samples. 
The reason is that vegetable oils con-
tain some unsaturated fatty acids, such 
as oleic acid, linoleic acid, and some 
saturated fatty acids. The spectral ab-
sorption peak in the 1660–1820 nm re-
gion is mainly assigned to the bending 
vibrations of the -CH2 and -CH3 groups, 
and the functional groups of CH-CH. 
The intensity of the absorption peak 
near 2100–2200 nm corresponds to the 
cis-double bond stretching vibration of 
the -CH groups.

TABLE II: Discriminant results of different wavelength selection based on the 
ELM model

Samples ELM-FULL FA-ELM FA-SPA-ELM

A1
Calibration set 95% 95% 100%

Prediction set 100% 100% 100%

A2
Calibration set 100% 100% 100%

Prediction set 91% 100% 100%

A3
Calibration set 100% 100% 100%

Prediction set 91% 100% 100%

A4
Calibration set 100% 100% 100%

Prediction set 100% 100% 100%

A5
Calibration set 95% 95% 100%

Prediction set 100% 100% 100%

TABLE III: Discriminant results of the four classification models based on FA-SPA

Samples ELM PLS-DA SVM LS-SVM

A1
Calibration set 100% 85% 95% 95%

Prediction set 100% 100% 100% 100%

A2
Calibration set 100% 100% 100% 100%

Prediction set 100% 91% 91% 100%

A3
Calibration set 100% 100% 100% 100%

Prediction set 100% 100% 100% 100%

A4
Calibration set 100% 100% 100% 100%

Prediction set 100% 100% 100% 100%

A5
Calibration set 100% 95% 95% 95%

Prediction set 100% 100% 100% 100%
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The spectral data are collected 
under the background of the same 
instrument parameters. The multivari-
ate scatter correction is employed to 
preprocess the spectrum to eliminate 
background noise and physical interfer-
ence, and then the subsequent experi-
ments are carried out. 

Principal component analysis (PCA) 
(26) is the most commonly used unsu-
pervised pattern recognition method. 
This method provides a visual repre-
sentation of the relationship between 
samples and variables. In this work, 
PCA is employed to reduce the dimen-
sion to achieve the visualization of the 
raw features. Figure 3 displays the dis-
tribution of the five-class oil samples 
in PC1-PC2-PC3 space. The results 
show that the first three PCs explain 
99.56% of the variability in spectral data  
(PC1 = 97.46%, PC2 = 1.39%, and PC3 = 
0.72%). It can be seen that the samples 
in A3—and in A1, A2, A4, A5—are re-
spectively classified into two distinct 
clusters. However, A1, A2, A4, and 
A5 are superposed in the PC space, 
and are not clearly discriminated or 
classified in the PC space, as shown.  
Therefore, a new method is needed to 
extract useful information and over-
come the disadvantage of the redun-
dant wavelength information.

Optimal the Characteristic
Wavelength by FA–SPA
The FA–SPA is developed to over-
come the disadvantage of the redun-
dant wavelengths, and to optimize it.  
Moreover, the ELM model is applied 
to discriminate the adulterated grape 
seed oil in this work.

To further illustrate the efficiency 
of the proposed method, FA, SPA, 
and FA–SPA are respectively em-
ployed to make a compar i son.  
The whole spectra contain 1441 spec-
trum wavelengths.

In FA, the relevant parameters are set 
as follows: The maximum fluorescence 
intensity of firefly is 1, the number of 
step size factor is 0.7, the number of 
initial firefly population is 50, and the 
maximum number of iterations is 100. 

The calibration set of 100 samples are 
set as input matrix (100 × 1441) to begin 
the wavelength search through FA.

The iterative process about extract-
ing the characteristic wavelength with 
FA algorithm is shown in Figure 4. It can 
be seen that the fitness value increases 
with the number of iterations increasing, 
and finally tends to be stable. It means 
that FA converges to the optimal value 
successfully. Although the fitness value 
is increasing, the number of the optimal 
wavelength does not decrease accord-
ingly. Correspondingly, the number of 
selected wavelengths constantly rises 
and falls during the iteration, and finally 
stabilizes at around 710. As the fitness 
function value converges to a steady 
state, the best wavelength combina-
tion is extracted, and shown in Figure 
5, where the vertical lines represent 
the selected wavelength. Clearly, the 
dimension of the selected wavelength 
is still high, because the superposed 
spectral absorption peak does not ex-
tract well. SPA is then applied to reduce 
the dimensionality further.

With respect to the SPA, the num-
ber of the selected wavelengths is 120, 
while the optimum value of RMSEC 
falls to 0.112. Figure 6 shows this op-
timal wavelength distribution, where 
the vertical lines represent the selected 
wavelengths.

Although the wavelengths are re-
duced from 1441 to 710 by the FA al-
gorithm, there are still some collinear 
interferences in the preferred wave-
lengths. Moreover, FA easily converges 
into the local optimum. Therefore, to 
improve the wavelength selection, 
the FA–SPA for wavelength selec-
tion is proposed. Firstly, FA is used to 
select 710 informative wavelengths,  
and then SPA is followed to select 17 
wavelengths with minimum redundant 
information from the 710 informative 
wavelengths. The selected 17 charac-
teristic wavelength variables are 1002, 
1004, 1012, 1013, 1016, 1036, 1076, 1124, 
1165, 1261, 1378, 1381, 1471, 1546, 1901, 
2084, and 2103 nm, respectively.

The results of three wavelength 
selection methods are summarized 

in Table I, where RMSEC is the root 
mean square error of calibration set 
and RMSEP is the root mean square 
error of prediction set. The wavelength 
variables are greatly reduced by FA–
SPA. The RMSEC and RMSEP of FA–
SPA are 0.382 and 0.264, respectively.  
Compared with the results of FA and 
SPA, although the precision of FA–SPA 
algorithm is a little bit larger, the re-
dundant wavelengths decrease signif-
icantly, and the model is greatly sim-
plified. In conclusion, the wavelength 
selected by FA–SPA is effective.

To summarize, the ELM classifica-
tion model based on the 17 optimal 
wavelengths selected by FA–SPA can 
achieve accurate prediction results. 
Therefore, although the RMSEC value 
rises to 0.382, the 17 optimal wave-
lengths selected by FA–SPA are still 
efficient and effective. 

The Contrast of ELM  
Model Based on the Three  
Wavelength Selection Methods
The classification model of ELM is ad-
opted to classify the adulterated grape 
seed oils. The model shows high dis-
crimination accuracy and stability when 
using a sigmoid function as the activa-
tion function of the single hidden layer. 
It is critical to select the single hidden 
layer neurons in ELM modeling analy-
sis. In order to obtain the optimal num-
ber of hidden layer neurons, the initial 
number of neurons in the hidden layer 
starts from 5, and gradually iterates up 
to 150 with 5 steps. 

In this paper, the ELM model with 
the full spectrum of 1441 wavelengths 
(denoted as ELM–FULL), the ELM 
model with 710 characteristic wave-
lengths selected by FA (denoted as 
FA–ELM), and the ELM model with 17 
characteristic wavelengths selected 
by FA–SPA (denoted as FA–SPA–ELM) 
are constructed from the 100 samples 
of the calibration set, respectively, 
and then the models are used to pre-
dict the 55 samples from the predic-
tion sets. After several experiments, 
the performance of the models are 
optimized when the number of hid-
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den layer neurons in ELM–FULL, 
FA–ELM, and FA–SPA–ELM model 
are set to be 100, 70, and 30, respec-
tively. The distinguishing results on 
the samples of the calibration set and 
the prediction set by the three mod-
els are summarized in Table II.

According to Table II, the FA–SPA–
ELM model achieves the best pre-
dictive performance with the iden-
tification rates of 100% for both the 
calibration set and prediction set. In 
fact, FA can eliminate the redundant 
information between wavelengths but 
there is strong collinearity between 
the extracting adjacent wavelengths, 
and SPA can effectively eliminate col-
linear information. The comparative 
results demonstrate that although 
the RMSEC value of FA–SPA in the 
preceding paragraph rises to 0.382, 
the selected 17 optimal wavelengths 
are still ef fective with the predic-
tive performance of the ELM model.  
Therefore, it is noteworthy to com-
bine these two algorithms to im-
prove the prediction accuracy of the  
classification model.

Comparison of the ELM Model  
and Other Discriminant Models  
Based on FA–SPA
To compare with the performance of 
the ELM model, the PLS–DA model, 
the SVM model, and the LS–SVM 
model are further built. We set 17 
wavelengths optimized by FA–SPA as 
input variables to establish the four 
models. The optimal number of PLS–
DA variables is set as 15, and the pen-
alty parameters and kernel function 
parameters of SVM are 90 and 150, 
respectively; these were obtained by 
a grid search. The samples of the cali-
bration set and the prediction set are 
tested by the above four classification 
models, and the different results can 
be observed in Table III.

Table III reveals the predic tion 
per formance of the four classif i -
cation models. Compared to the 
LS–SVM, SVM, and PLS–DA model,  
the ELM model presents excellent 
predictive ability. Actually, classifica-

tion with ELM can be implemented via 
parallel computations because of its 
network structure, so it has more po-
tential for real-time applications with 
a comparable accuracy. The estab-
lished four models are based on the 
selected characteristic wavelengths, 
indicating that the optimization of 
characteristic wavelength is benefi-
cial to simplifying the model. Overall, 
the analyzing and comparison of all 
models indicated the greater ability 
of the FA-SPA-ELM model to discrimi-
nate the adulterated grape seed oil.

Conclusions
In this work, to rapidly and efficiently 
discriminate the adulterated grape 
seed oils, the optimized characteris-
tic wavelengths by FA–SPA are devel-
oped to establish the ELM discriminant 
model based on the NIR spectroscopy 
data at 1000–2300 nm. The results 
show that FA-SPA can greatly reduce 
the wavelength variables, with the 
number of wavelength variables de-
creased from 1441 to 17. The accuracy, 
stability, and generalization of the ELM 
model are further improved based on 
the selected wavelength variables.  
This developed FA–SPA–ELM algo-
rithm is effective and promising in 
identifying the adulterated grape seed 
oils based on NIR spectroscopy.
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Model for Retrieving Leaf Chlorophyll 
Using the Wavelet Analysis Algorithm 
with the Prospect Radiative Transfer 
Model and Vis-NIR Spectra

We proposed a new retrieving model 
(named CAB1) for estimating the chlo-
rophyll content at leaf level using the 
Prospect radiative transfer (RT) model. 
CAB1 is built based on multiband in-
formation derived from the radiative 
transfer model. Specifically, a continu-
ous wavelet analysis algorithm was 
used to find the wavelet coefficients 
for those spectral characteristics that 
can highlight the chlorophyll content.  
Then, the simulated data sets gener-
ated by the Prospect model were used 
to evaluate the sensitivity of CAB1 in 
chlorophyll and its stability to other 
biochemical components (leaf struc-
tural parameters, water, carotenoids, 
brown pigment, and dry matter).  
Finally, CAB1 was verified using the 
Lopex93 and Angers experimental 
spectral data sets. Quantitative and 
qualitative results revealed that the 
retrieving model was not only more 
accurate than the traditional spectral 
index (the highest R2 of the inversion 
value and the measured value is 0.9), 
but also more stable.

Feifei Xie, Lin Sun, Jie Wang, and Fengzhu Liu

Chlorophyll is the dominant 
factor af fecting vegetation 
photosynthesis, and it is closely 

related to other biochemical param-
eters such as protein, nitrogen, lignin, 
and water (1). The chlorophyll content 
in a crop can be used to indicate the 
photosynthetic capacity, growth cycles, 
and degrees of stress (such as disease, 
insect pests, and heavy metal stress) 
(2,3). Traditional biochemical methods 
for measuring the chlorophyll content 
(such as spectrophotometry, in which 
samples must be pretreated in the 
laboratory) are destructive to the veg-
etation as well as time-consuming and 
laborious; thus, spectral reflectance is 
an attractive alternative (4,5).

During the past few decades, many 
studies have proposed the spectral in-
dices required to estimate chlorophyll 
contents. By using one of the existing 
spectral indices or the sensitive bands 
of chlorophyll, a single or multivariate 
analysis model can be established. 
Several studies have successfully es-
timated the chlorophyll content in 
vegetation using visible ratios (6),  
vis-NIR ratios (7–9), red-edge reflec-
tance ratio indices (10,11), and spectral 

and derivative red-edge indices (12). 
Yan used the Prospect model to test 
the applicability of four types of spec-
tral indices, such as visible ratios (eight 
kinds), vis-NIR ratios (eight kinds), 
red-edge reflectance ratio indices  
(six kinds), and derivative red-edge 
indices (six kinds), to test chlorophyll 
content extraction. She found that 
some spectral indices, such as nor-
malized difference vegetation index 
(NDVI) and the modif ied chloro-
phyll absorption in reflectance index 
(MCARI), are not suitable for retrieving 
chlorophyll based on the reflectance 
spectra. Rather, it was necessary to 
carefully select a spectral index for 
a specific application (13,14). Using a 
spectral index to evaluate the chloro-
phyll content of vegetation is simple 
and flexible, but there are obvious 
limitations. One limitation is that the 
spectral index method does not con-
sider the radiative transfer (RT) mecha-
nism of light in the leaf, which leads to 
a lack of definite physical meaning (15). 
The other limitation is that spectral 
index models are generally adapted 
to specific databases and are difficult 
to generalize to other databases.
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Therefore, researchers began to 
consider optical models with geomet-
ric meanings, including the radiative 
transfer performance of light in veg-
etation, and the effects of vegetation 
biochemistry on light. The process of 
light reflection and absorption in veg-
etation and the interaction process 
were mathematically described to re-
trieve the biochemical components 
of the vegetation. Optical models, 
such as the Prospect (16), Liberty (17),  
and Leafmod (18) models, are not lim-
ited to the time, location, and other 
factors, and they are robust to noise. 
Yan noted that the reflection and ab-

sorption spectra simulated using the 
Prospect model are nearly the same as 
those of the measured spectra. Jiang 
used the Prospect model to simulate 
spectral data of dif ferent spectral 
scales (different bandwidths (5–65 nm)) 
and analyzed the validity and sensitivity 
when applied to the estimation of the 
chlorophyll content (19). Wang used the 
Prospect model to simulate the spec-
tra of leaves with different biochemical 
characteristics, and analyzed the influ-
ence of different mathematical combi-
nations of the NDVI spectral index on 
the elimination of interference factors. 
The spectral index of the dual NDVI 

ratio vegetation index was established 
to estimate the carotenoid content in 
leaves (20). Zhang used the Prospect 
model to construct a lookup table 
from which the chlorophyll content of 
eucalyptus leaves could be retrieved.  
The spectral data determined using a 
statistical method, an estimation model 
linking the chlorophyll, and carotenoid 
content with spectral characteris-
tic parameters of eucalyptus leaves,  
were established (21). 

The aim of this study was to con-
struct a new spectral index for estimat-
ing chlorophyll content at the leaf level 
with physical implications, robustness, 
and universality. First, the relationship 
between the chlorophyll content and 
the spectral characteristics of vegeta-
tion based on the transmission mecha-
nism of the Prospect optical model was 
analyzed to construct a new specific 
band. The “Experimental Materials 
and Methods” section introduces the 
experimental materials and methods, 
and describes the establishment of a 
new inversion model for chlorophyll 
content with continuous wavelet trans-
form (CWT). The “Results” section re-
views the experimental results, which 
describe the new inversion model 
validation of comparison with other 
vegetation indices. The “Discussion” 
section focuses on the advantages and 
disadvantages of new spectral index. 
Finally, the “Conclusion” section sum-
marizes the findings of the study.

Experimental Materials and Methods
Prospect Leaf Model Simulated Dataset
The Prospect model, among the most 
mature RT models, has few required 
parameters and easy inversion. It can 
simulate the optical properties of veg-
etation leaves from 400 nm to 2500 nm 
(22). The Prospect model is a simple 
“flat model.” The leaf is composed 
of N-plate layers and N-1 air layers. 
In Prospect-5 (23), the total spectral 
absorption coefficient (k) of each leaf 
plate layer is a function of leaf struc-
tural parameters (N), chlorophyll con-
tent (Cab), water content (Cw), carot-
enoids (Car), brown pigment (Cbrown), 

TABLE I: The spectral simulation test with difference input parameters in  
Prospect

Dateset 
name N Cab (μg/

cm2)
Car (μg/

cm2) Cbrown
Cw

(cm)
Cm

(g/cm2)

Set_Cab 1.5 20–60, 
step 1 12 1 0.012 0.005

Set_N 1–3, step 
0.5 50 12 1 0.012 0.005

Set_Cm 1.5 50 12 1 0.012 0.003–0.015, 
step 0.002

Set_Car 1.5 50 5–25, 
step 5 1 0.012 0.005

TABLE II: The common vegetation indices for predicting leaf chlorophyll  
content, including the spectral index name, formulas, and sources

Section Spectral Index Formula Source

Spectral index 
of visible light

native plant  
conservation  

initiative (NPCI)

(R680-R430)/
(R680+R430)

(34)

transformed chlorophyll 
absorption in  

reflectance index (TCARI)

3*((R700-R670)-
0.2*(R700-R550) 

*(R700/R670))
(35)

modified chlorophyll  
absorption in  

reflectance index (MCARI)

((R700-R670)-
0.2*(R700-R550)) 

*(R700/R670)
(2)

Spectral indices 
of visible and 
infrared light

MERIS terrestrial  
chlorophyll index (MTCI)

(R750-R710)/
(R710-R680)

(36)

Triangular  
vegetation index (TVI)

(120*(R750-R550)-
200*(R670-R550))/2

(37)

Transformed Chlorophyll 
Absorption in Reflec-

tance Index/Optimized 
Soil-Adjusted Vegetation 

Index (TCARI/OSAVI)

(3*((R700-R670)-
0.2*(R700-R550) 
*(R700/R670)))/

(1.16*(R800-R670)/
(0.16+R800+R670))

(35)

Red-edge 
spectral index

Gitelson & Merzylak (GM) R750/R700 (38)

Vogelmann2 (VOG2)
(R734-R747)/
(R715-R726)

(39)



December 2021   Advances in UV-Vis-NIR Spectroscopy  23www.spectroscopyonline.com

PEER-REVIEWED RESEARCH

and dry matter (Cm). Therefore, the 
absorption (A) of a leaf plate layer can 
be approximately expressed as a func-
tion of the leaf structural parameter 
(N) and a single plate layer absorption  
coefficient (k) (24,25). 

A(λ) = Nke(λ) + Cabkab(λ) + Carkar (λ) +
Cbrownkbrown (λ) + Cmkm (λ) + Cwkw (λ)

[1]

where Ke is the refractive index of the 
basic whitening layer; kab is the corre-
sponding absorption coefficient spec-
trum of the leaf chlorophyll; kcar is the 
corresponding absorption coefficient 
spectrum of the leaf carotenoid; kbrown is 
the corresponding absorption coefficient 
spectrum of the leaf brown pigment;  
kw is the corresponding absorption co-
efficient spectrum of the leaf water; and 
km is the corresponding absorption coef-
ficient spectrum of the leaf dry matter. 

Ke, kab, kcar, kbrown, km, and kw were 
measured and fixed (23). Thus, the 
Prospect model had six input param-
eters, including the leaf structure (N), 
content of chlorophyll a+b (Cab), carot-
enoids (Car), brown pigment (Cbrown), 
equivalent water thickness (Cw), and dry 
matter content (Cm). Its output param-
eters were the reflectivity and spectral 
transmittance of the leaf ranging from 
400 to 2500 nm, and the sampling in-
terval was 1 nm.

According to different experimen-
tal purposes, the input parameters of 
the Prospect model are set, and the 
simulated data set with different bio-
chemical components can be simu-
lated. Four simulation data used in this 
paper, named Set_Cab, Set_N, Set_Cm,  
and Set_Car, are shown in Table I.

The sensitivity index, SI, is used for 
accuracy evaluation (equation 2) (26).

SI =                         x100%
|VI|max – |VI|min

|VI|min
[2]

where VI is the calculated values of the 
spectral indices and |VI| is the absolute 
value. The smaller the SI, the smaller 
the influence of the component on the 
spectral index.

Lopex93 and Angers
Measured Data Set
The Lopex93 database was established 
by the Joint Research Center (JRC) in 
1993 (27). Approximately 70 leaf sam-
ples representations of more than 50 
species were obtained. The database 
contains 62 samples of spectral data 
and chlorophyll content data, includ-
ing 13 monocotyledons and 49 dicoty-
ledons. Spectra were collected over 
the 400–2500 nm region with a sam-
pling interval of 1 nm. The database 
not only takes into account the differ-
ences of different species, but also the 
changes of biochemical composition in 
time. It fully comprises the diversity of 
biochemical composition content and 
inner types of leaves. The database 
cannot only provide a more effective 
test for spectral index, but also serve as 
an ideal data source for analyzing the 
correlation between chlorophyll con-
tent and spectral reflectance of mixed 
species. The Lopex93 data set can be 
accessed free online (http://opticleaf.
ipgp.fr/index.php?page=database). 

The Angers database was estab-
lished at the National Institute for Ag-
ricultural Research (INRA) in Angers, 

France, in June 2003 (23). Approxi-
mately 276 leaf samples representa-
tions of more than 39 species were 
obtained. The directional-hemisphere 
reflectance spectra were measured 
using an ASD FieldSpec spectrom-
eter with a spectral range of 400–2500 
nm and a data interval of 1.4 nm.  
The biochemical parameters include 
leaf chlorophyll content, carotenoids, 
specific leaf weight (SLW), and water 
content. The Angers data set can also 
be accessed free online (http://opticleaf.
ipgp.fr/index.php?page=database). 

Wavelet Analysis Method
Wavelet transform is an effective math-
ematical tool used to decompose the 
original spectral signal into multiple 
scales (28,29). The continuous wave-
let transform (CWT) tool can make 
the wavelet shift smoothly to different 
positions; thus, each scale component 
can be compared directly to the input 
spectral reflectance, and more useful 
spectral information can be captured 
(30). In this study, the CWT wavelet 
analysis method was used in the spec-
tral analysis method. The CWT is de-
fined as follows in equation 3 (31),

άWf (a,b) = ʃ f (λ)   Ψ (       ) dλ 1
+∞

-∞ ά
λ–b   [3]

where Wf is the signal to be analyzed;  
Ψ is a chose wavelet basis function, 
such as biorthogonal (bior), daubechies 
(db), coiflets (coif ), or symlets (sym) 
(32); Ψa,b (λ) is the prototype to gen-
erate child wavelets by adjusting the 
scale parameter a (the correspond-
ing decomposition frequency or band 

TABLE III: Vegetation indices with different mesophyll structure parameters 

Index CAB1 NPCI TCARI MCARI MTCI TVI TCARI/
OSAVI GM VOG2

Cab (R
2) 0.9949 0.9321 0.9239 0.9951 0.9805 0.9949 0.7032 0.9900 0.9987

N (SI%) 34.87 1652.53 628.45 1881.76 142.30 125.66 479.88 60.63 69.21

Cm (SI%) 0.56 1.52 6.12 11.06 4.52 10.58 1.40 5.50 8.07

Car (SI%) 2.28 1.37 5.42 2.17 0.00 0.90 5.42 0.00 0.00

Ava 0.8998 -3.2293 -0.6056 -3.7600 0.6295 0.6476 -0.2249 0.8346 0.8064



24  Advances in UV-Vis-NIR Spectroscopy   December 2021 www.spectroscopyonline.com

PEER-REVIEWED RESEARCH

range) and b the translation factor 
(corresponding to the band position);  
λ is the wavelength; and dλ is the  
spectral resolution.

In this study, the spectral reflectance 
signal was processed by continuous 
wavelet transform, where f(λ) is the 
spectral reflectance value or absorp-
tion coefficient spectrum of the leaf. 
Commonly used continuous wavelet 
decompositions are selected as Ψ;  
a is the spectrum scale of 100 nm, 150 
nm, and 200 nm; b is the band posi-
tion which should be selected by anal-
ysis; λ is the wavelength that can be 
cut down by analysis; and dλ = 1 nm.  
After the CWT wavelet analysis, the co-
efficients are obtained, which can be 
used for singularity detection or peri-

odic analysis. When the signal is pro-
jected into the wavelet transform do-
main, it is advantageous to extract some  
useful features. 

Reconstruction of a
New Leaf Spectral Index
To construct the new spectral index for 
the chlorophyll content of leaves, the re-
lationship between the reflectance and 
biochemical components of the vegeta-
tion is built first. As is known, the summa-
tion of the spectral reflectance of the leaf 
(R), transmittance (T), and absorption (A), 
were constantly one. The shape of the 
leaf reflectance and transmittance were 
found to be similar in the visible and near-
infrared (NIR) radiation, and could be ex-
pressed approximately as follows (33)

T (λ) = αR (λ)                      [4]

where α is a constant.
The spectrum absorption rate, A, 

could be expressed as:

A(λ) = 1– (1+α)R (λ)              [5]

By combining equation 1 with equation 
5, the formula of the leaf spectrum re-
flectance rate (R) could be obtained.

1–(а+1)R(λ) = Nke(λ) + Cabkab (λ) + Carkar (λ) +
Cbrownkbrown (λ) + Cmkm (λ) + Cwkw (λ)

[6]

Different biochemical components 
have a different influence on the re-
flectance in the band 400–800 nm (the 
sensitive spectrum range of the chloro-
phyll). In the Prospect model, only one 
biochemical component was set with 
different ranges and the other input 
parameters were fixed to obtain many 
reflectance spectra, which were used 
to test the influence of the biochemi-
cal component on the reflectance.  
For example, to test the Cab in the 
band 400–800 nm influence on the re-
flectance in the Prospect model, Cab 
was set from 5 to 95 μg/cm2 (step size 
was 15 μg/cm2). The other input param-
eters were fixed (N = 1.5, Cw = 0.012 
cm, Cm = 0.005 g/cm2, Car = 12 μg/cm2,  
and Cbrown = 1). Finally, seven reflec-
tance spectra curves were obtained, 
which were used to find the band re-
gion where reflectance is changed with 
a different Cab. The test result is shown 
in Figure 1. The range of the influ-
ence for Cab was 500–750 nm, but the 
ranges of 400–500 nm and 750–800 nm 
were not an influence on the spectra.  
The range of inf luence for N was 
500–800 nm, for Cm it was 700–800 
nm, for Car it was 480–550 nm, but Cw 
and Cbrown did not change, and the 
content changes did not affect the 
spectral shape. We found that, in the 
range of 550–700 nm, the reflectance 
spectrum was affected only by chloro-
phyll Cab and N. Thus, to extract the 
main influence spectrum range of Cab 
and minimize the effect of the other 

Cab

N

Cm

Cw

Car

Cbrown
400 500 600 700 800

Band (nm)

FIGURE 1: The chlorophyll sensitive band areas (in nm) of different dataset  
contents. Abscissa is spectral band (nm) and ordinate is dataset spectra.
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FIGURE 2: The CWT curve Wkab (the blue line) and WKe (the red line) with 
spectrum scale a = 150 nm using wavelet function “bior1.1”.
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components, the final sensitive band 
range of chlorophyll was determined 
to be from 550 to 700 nm. Then, equa-
tion 6 was further reduced as follows:

1–(α+1)R(λ) = Nke (λ) + Cabkab (λ) + b     [7]

where b is a constant value, meaning 
Cm, Car, Cw, and Cbrown content changes 
do not affect the reflectance spectra.

In mathematics, the result of CWT 
computation for constant value is 0. 
The calculated value of constant coef-
ficients with CWT computation remains 
unchanged. Therefore, both sides of 
equation 7 are carried out with the 
CWT computation. At the same time, 
we can obtain equation 8

–(α+1)*WR(a,b) = N*Wke
(a,b)+Cab*Wkab

 (a,b)
[8]

 
where the wavelet coefficients WR(a,b), 
Wke(a,b) and Wkab(a,b) are deter-
mined by scaling factor a, the specific 
band position b, and wavelet base  
function Ψ.

Finally, two factors were considered 
to determine the scale basis function 
and band position of the continuous 
wavelet decomposition in building 
the new spectral index. One fac-
tor was in the range of 550–700 nm,  
the CWT curve of the kab(a,b) should 
have a wave valley or wave peak at 
bands w1 and w2, where the chlo-
rophyll absorption was sensitive.  
The other factor was that the CWT 
curve of Ke(a,b) should be approxi-
mately 0 at bands w1 and w2, eliminat-
ing or decreasing the influence of N 
on the reflectance spectrum. Through 
a large number of comparative experi-
ments, in the selected band range 
from 550 to 700 nm, with a spectrum 
scale of 100 nm, 150 nm, and 200 nm, 
were conducted to Kab(a,b) and ke(a,b). 
We found that “bior1.1” with a spec-
trum scale of 150 nm can meet the two 
factors as shown in Figure 2. Thus, the 
wavelet base function Ψ was chosen as 
“bior1.1”, the wave spectrum scale, s, 
was 150 nm (a = 150 nm), the wave-peak 
w1 position was 699 nm, and the wave-
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FIGURE 4: Validation results of chlorophyll estimation with Lopex93 data us-
ing various approaches: (a) TCARI, (b) MTCI, (c) VOG2, and (d) CAB1; and 
Angers data: (e) TCARI, (f) MTCI, (g) VOG2, and (h) CAB1.
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valley w2 position was 613 nm (b = 699 
nm and 613 nm). 

At the wave-peak w1 and wave-val-
ley w2, two formulas can be obtained 
using Formula 8.

–(α+1)*WR(α, w1) = N*Wke 
(α, w1) + Cab*Wkab 

(α, w1) 
[9]

–(α+1)*WR(α, w2) = N*Wke 
(α, w2) + Cab*Wkab 

(α, w2) 
[10]

Cab= N* 
WR(a,w1)*Wke(a,w2) – WR(a,w2)*Wke(a,w1)

WR(a,w2)*Wkab(a,w1) – WR(a,w1)*Wkab(a,w2)

[11]

where w1 equals 699 nm, w2 equals 613 
nm, a equals 150 nm, and the wavelet 
function is “rbio1.1”. According to Fig-
ure 2, we can obtain the wavelet coef-
ficients Wkab and WKe as follows:

 
Wke(a,w1) = -0.1113,     Wke(a,w2) = -0.1134
Wkab(a,w1) = 0.2327,     Wkab(a,w2) = -0.1386 [11a]

A new leaf  chlorophy l l  content 
model, termed CAB1 with the wave-
let function “rbio1.1,” was obtained as  
equation 12:

CAB1= Cab= *
-WR(150,699)*0.1134 + WR(150,613)*0.1113
WR(150,613)*0.2327 + WR(150,699)*0.1386

[12]

CAB1 is only affected by the parameter 
N. Then, for the same crop type during 
the same growth period, N was a fixed 
constant and CAB1 was only affected 
by the leaf spectrum reflectance rate.

The Spectral Indices Sensitive  
to Leaf Chlorophyll Contents
To test the established inversion model 
CAB1, eight commonly used spectral 
indices (Table II) sensitive to leaf chlo-
rophyll contents were used for com-
parison, including the spectral index of 
visible light NPCI, TCARI, and MCARI; 
spectral indices of visible and infrared 
light MTCI, TVI, and TCARI/OSAVI; 
and red-edge spectral index GM  
and VOG2.

Results
Two aspects should be considered 
in the spectral index evaluation:  
The spectral index is sensitive to chlo-
rophyll content, and it can resist the 
influence of other factors. First, the 
Prospect optical model was used to 
simulate the spectral curves with dif-
ferent chlorophyll content, and the ad-
vantages and disadvantages of each 
spectral index were analyzed. Accord-
ing to existing spectral indices (Table 
II), the band range was selected from 
400 to 800 nm. According to the analy-
sis in Figure 1, the influencing factors 
only included N, Cm, and Car. Finally, 
the Lopex93 and Angers real data were 
used to analyze the spectral index. 

Spectral Indices Sensitivity for  
Leaf Chlorophyll Content Cab 
The data of Set_Car is used for spectral 
indices sensitivity for leaf chlorophyll 
content Cab. As shown in Figure 3,  
the values of CAB1, MTCI,  and 
GM monotonously increase with 
the increase in chlorophyll con-
tent, and NPCI, TCARI, MCARI, TVI, 
TCARI/OSAVI, and VOG2 decrease.  
They have a good linear relationship 
with the chlorophyll content, and their 
R2 are greater than 0.9—except NPCI, 
R2 = 0.6371) (the first line of Table III)—
indicating that these eight spectral in-
dices have good sensitivity to different 
chlorophyll content. When the chloro-
phyll content was less than 30 μg/cm2, 
TVI exhibited an opposite monotonic 
feature compared to that when the 
content was greater than 30 μg/cm2, 
which indicates that when the Cab 
content is low (less than 30 μg/cm2), 
TVI is not suitable for retrieving leaf 
chlorophyll. Similarly, at a chlorophyll 
content of 40 μg/cm2, NPCI showed 
the opposite monotonic characteris-
tics, and the curve gradually changed 
and usually became smooth, indicat-
ing that NPCI was easy to saturate. 

Ability to Resist the Influences of  
Other Leaf Biochemical Components
The test result of Set_N is shown in 
Table III (the second line). The influ-

ence of N on the par tial spectral 
index is large, such as NPCI, TCARI, 
MTCI,  and TCARI/OSAVI.  Under 
the same chlorophyll content, the 
MTCI value changed approximately 
19 times when the N changed from 
1 to 3, followed by NPCI, TCARI, 
and TCARI/OSAVI. The SI of VOG2, 
GM, and CAB1 are smaller, particu-
larly the SI value of CAB1, which is  
only 34.87%. 

The test result of Set_Cm is shown 
in Table III (the third line). The influ-
ence of Cm on the partial spectral 
index is small. Only the SI of TVI 
is over 10%. TCARI/OSAVI, NPCI,  
and CAB1 had the smallest SI values, 
particularly for CAB1, which had a SI 
value of only 0.56%.

The test result of Set_Car is shown 
in Table III (the fourth line). The in-
f luence of Car on the partial spec-
tral index is very small. Only the SI 
of TCARI and TCARI/OSAVI are over 
5%. The SI of CAB1, NPCI, MCARI, 
and T VI  a re approx imate ly  2%,  
and the SIs of MTCI, GM, and VOG2 
are all approximately 0%.

Spectral Index Verification  
with Lopex93 and Angers Data
Using the 190 Lopex93 reflectivity 
spectral data, the quadratic model 
of CAB1, TCARI, MTCI, and VOG2 
were built. The 80 validation spectral 
data were used to verify the inver-
sion chlorophyll content accuracy. 
For Angers data, 69 reflectivity spec-
tral data were used to build the qua-
dratic model of CAB1, TCARI, MTCI, 
and VOG2, and 60 validation spectral 
data were used as validation data. 
Because the structural parameter of 
the leaf N cannot be determined in 
the Lopex93 and Angers data, N is 
assumed to be the standard value, 
which is 2. The R2 and RMSE are used 
to evaluate their accuracy (Table IV). 
Validation results of chlorophyll es-
timations are done by the quadratic 
model of CAB1, TCARI, MTCI, and 
VOG2, which is shown in Figure 4.

As shown in Table IV and Figure 
4, the quadratic models of CAB1, 
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TC A R I ,  M TC I ,  a n d  VO G2  w i t h 
Lopex93 data have low RMSE (RMSE 
< 3.20). The R2 of MTCI is greater 
than 0.72, which is better than TCARI 
and VOG2. The R2 of CAB1 is 0.9108, 
and the RMSE values are smaller 
(RMSE = 2.0294). Compared with 
TCARI, MTCI, and VOG2, CAB1 is 
more accurate and robust. 

The results of CAB1, TCARI, MTCI, 
and VOG2 estimating chlorophyll 
with Angers data are shown in Table 
IV and Figure 4. The quadratic mod-
els of CAB1, TCARI, MTCI, and VOG2 
with Lopex93 data have high R2 (R2 > 
0.84), which indicates that they have 
high accuracy for chlorophyll estima-
tion. The R2 of MTCI is greater than 
0.89, which is better than TCARI and 
VOG2. The R2 of CAB1 is 0.9116,  
and the RMSE values are smaller 
(RMSE = 3.6925). Compared with 
TCARI, MTCI, and VOG2, CAB1 is 
more accurate and robust. 

From the analysis of two sets of 
data, it was found that the R2 of CAB1 
was the highest, and the RMSE was 
the smallest among the four spec-
tral indexes, indicating that CAB1 
performs the best. 

Discussion
The Performance of Wavelet Analysis 
Method with Prospect Model in the 
Reconstruction of Leaf Spectral Index
As shown in equation 8 using the 
spectral analysis method, the spec-
tral reflectance is limited to 700–800 
nm, and the inversion of chlorophyll 
content has only two important fac-
tors: N and Cab. By using continuous 
wavelet decomposition, the spectral 
energy can be decomposed to find 
the band position with the largest Cab 
effect and the smallest N effect, thus 
providing the possibility of construct-
ing a new spectral index for chloro-
phyll inversion (Figure 2). 

The Prospect model star ts with 
spec tral and vegetation compo-
nents and has a strong theoretical 
basis. Therefore, the spectral index 
is constructed step-by-step based 
on the Prospect formula, which has 

sufficient theoretical basis. However, 
the results are still af fected by N  
(equation 12). Although the experi-
mental results show that the effect 
of N on CAB1 is relatively small, the 
accuracy of vegetation index would 
be further improved if the specific 
value of N can be obtained from 
the measured data. In addition, the 
model used in this experiment was 
Prospect-5, which does not sepa-
rate chlorophyll from anthocyanin, 
resulting in a greater impact of Car, 
shown in Table III (the fourth line). 
With the refinement of the Prospect 
model, the accuracy of building a new 
vegetation index is expected to be  
further improved.

The Performance of the  
CAB1 Method in the  
Estimation of Leaf Parameters
From the Prospect simulation data, 
CAB1 is in the upper and middle 
reaches, shown in Table III. Through 
the aforementioned analysis, the 
spectral index on the sensitivity of 
chlorophyll content and ability to 
resist the influences of other com-
ponents such as the structure of me-
sophyll, dry matter, and carotenoids, 
were summarized to estimate the ef-
fectiveness of assessing chlorophyll 
content. The comprehensive evalua-
tion index (Ava) is defined as follows:

Ava = 
P×R2+Pi×(1-SIi%)+Pi+1×(1-SIi+1%)...+Pi+n×(1-SIi+n%)

P+Pi+Pi+1...Pi+n

[13]

where R2 is the spectral sensitiv-
ity of the biochemical components,  
as represented by the index trend line 
fitting degree value R2 (Table III); 1 − 
SI% is the ability of spectral indices to 
resist other biochemical components 
(SI% are selected in Table III); P, Pi 
… Pi+n are the influence weights for 
each biochemical component, which 
were set at 1. When the Ava of the 
spectral index is higher, the ability to 
resist the influence of other compo-
nents is stronger, indicating that the 
spectral index comprehensive ability  
is stronger.

Table III shows that NPCI, TCARI/
OSAVI, and MCARI have the low Ava 
value and are not suitable for evalu-
ating chlorophyll content in a vegeta-
tion leaf. MTCI and TVI comprehen-
sive evaluations are medium, and 
they have a certain guiding role for 
the particular vegetation or a certain 
period of growth of vegetation but 
are not used for all vegetation. The 
Ava values of CAB1, GM, and VOG2 
are higher (greater than 0.8), and the 
models are sensitive to chlorophyll 
content and are relatively stable. The 
CAB1 integrated capacity evaluations 

TABLE IV: Results of spectral index TCARI, MTCI, VOG2, and CAB1 estimating 
chlorophyll with LOPEX93 data

Data Spectral 
Index Fitting Equation R2 RMSE

(μg/cm2)

Lopex93 
data

TCARI -91.894x2 - 44.354x + 53.557 0.7139 2.9286

MTCI -2.7484x2 + 20.904x + 11.615 0.7254 3.1681

VOG2 -75.849x2 + 277.12x - 202.43 0.6997 3.2044

CAB1 -3.6676x2 - 6.2732x + 52.924 0.9108 2.0294

Angers 
data

TCARI 498.62x2 - 401.19x + 103.68 0.8424 4.2714

MTCI -4.0092x2 + 34.616x + 0.4941 0.8939 3.7217

VOG2 -2304.6x2 - 775.87x + 1.1046 0.8668 4.1753

CAB1 21.029x2 + 137.62x + 247.41 0.9116 3.6925
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were equivalent to model sensitivity 
and stability optimum. CAB1 is based 
on the Prospect model, so using Pros-
pect simulation data can explain the 
status quo of the vegetation index. Al-
though CAB1 does perform relatively 
well based on the Lopex93 and An-
gers data validation, more measured 
data are needed for further validation.

Conclusions
This study generated a new spectral 
index, named CAB1, to estimate the 
chlorophyll content of a vegetation 
leaf. Based on the Prospect opti-
cal model, the continuous wavelet 
analysis method was used to estab-
lish the CAB1 model, in which the 
“rbio1.1” wavelet basis function with 
a scale of 150 nm, as well as reflec-
tance spectra for 613 and 619 nm, 
were selected. The CAB1 model is 
derived from the Prospect model,  
so the CAB1 model has a strict physi-
cal meaning. The practical adaptabil-
ity of some spectral indices, which are 
based on statistics, was the biggest 
disadvantage. CAB1 is not based on 
statistics, but instead on the theory 
of real light propagation, which is  
more adaptable.

A good chlorophyll vegetation 
index should be sensitive to chloro-
phyll while simultaneously not being 
sensitive to other factors. To verify 
the adaptability of CAB1, a compari-
son was made with eight commonly 
used spectral indices. According to 
the Prospect model, the data de-
scribing the relationship between 
the leaf spectrum and the content 
of each component were simulated.  
A comparison of the chlorophyll sen-
sitivity and resistance to the meso-
phyll structure, dry matter, and ca-
rotenoid content of the CAB1 model 
and the common chlorophyll spec-
tral indices was examined. MCARI 
was found to per form the worst 
(Ava = -3.7600). MCARI is very sen-
sitive to the chlorophyll content but 
also to other components such that 
it is only suitable for retrieving the 
chlorophyll content of the same veg-

etation leaf within a single period.  
The VOG2, GM, and CAB1 models 
performed the best (Ava > 0.8) be-
cause they can retrieve the chloro-
phyll content of any vegetation leaf 
with high accuracy. To verify this con-
clusion, the actual data of Lopex93 
and Angers were selected. CAB1 (pro-
posed method), TCARI (spectral index 
of visible light), MTCI (spectral indices 
of visible and infrared light), and GM  
(red edge spectral index) were se-
lected to retrieve the chlorophyll 
content of vegetation leaves using 
the Lopex93 and Angers data. Based 
on the actual data, MTCI, TCARI, and 
VOG2 were found to have moderate 
inversion accuracy (the maximal R2 is 
0.8), which may be because of noise 
in the actual data. However, CAB1 of-
fers a high level of accuracy (R2 > 0.9), 
which indicates the CAB1 model is 
not only more accurate than the other 
vegetation indexes, but is also very 
stable. Overall, CAB1 performed well 
in the leaf layer compared to the com-
monly used spectral indices NPCI, 
TCARI, and MCAI in visible regions, 
and CAB1 is comparable to the red 
edge spectral index GM and VOG2. 

This research was based on the 
Prospect model simulation data. 
Because of the influence of the ac-
curacy of the model, and given that 
the experimental data may be slightly 
different, the universality of the re-
search results must be further veri-
fied. However, the results of this study 
provide some pointers for combining 
the physical model and the spectral 
index method.
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Inversion of Low-Grade Copper  
Mining Areas Based on Spectral  
Information and Remote  
Sensing Data Using Vis-NIR 

With the continuous exploitation and uti-
lization of mineral resources, the mineral 
reserves of all countries in the world are 
decreasing. In this case, the boundary 
grades and industrial grades of ore are 
bound to be adjusted downward along 
with the decrease of mineral resources. 
Low-grade ore will have mining value 
and bring economic benefits to enter-
prises. For low-grade ore, the traditional 
content determination has the disadvan-
tages of high cost and long time con-
sumption. Therefore, it needs a method 
that can quickly identify the content 
of low-grade ore. In addition, mining 
will destroy the surrounding ecologi-
cal environment and cause heavy met-
als in the land to exceed the standard. 
This paper proposes a method of using 
spectral information and remote sens-
ing data to determine copper content in 
mining areas. We trained the calibration 
model with spectral data as input, and 
the copper content of the ore as output.  
Finally, through the remote sensing infor-
mation of the mining area, the metal con-
tent of the entire mining area is inverted. 
This provides guidance for the later ben-
eficiation technology of ore, and the rec-
lamation of the land after mining.

Dong Xiao, Hongfei Xie, Yanhua Fu, and Feifei Li

As one of the earliest non-
ferrous metals smelted and 
used by humans, copper is 

closely related to human activities. 
More than 7000 years ago, copper 
was used by humans in waging war (1). 
Some scholars believe that a Copper 
Age occurred between the Stone Age 
and the Bronze Age (2). With the de-
velopment of modern technology and 
the progression of society, copper has 
also been widely used in electronic 
power, transportation, and construc-
tion. In addition to its good perfor-
mance in traditional industries, copper 
is also one of the essential elements 
of human life. Through experimental 
research, copper has proven to have 
a beneficial effect on patients with 
anemia (3). Copper also has shown 
the ability to prevent cardiovascular 
diseases (4). Because copper has the 
effect of eliminating infectious viruses, 
medical scientists have considered 
using copper to prevent and treat 
Covid-19 (5). As the fields of applica-
tion continue to expand, the copper 
smelting industry has also been de-
veloping, occupying a large propor-
tion of the international economy.  

However, with the continuous ex-
ploitation and utilization of cop-
per resources, the reserves of some 
mining areas have been exhausted.  
Because of the different grades of 
ore, the beneficiation process ad-
opted by copper-related enterprises 
is also different. For these enterprises, 
a method that can quickly and accu-
rately determine the heavy metals in 
ore can save time and bring more eco-
nomic benefits to enterprises. 

There are many methods for mea-
suring copper ore (6–8). The first is the 
electrochemical method. This method 
uses the oxidation-reduction reaction 
of the metal to determine the metal 
content in the mixture. Although this 
method is simple, since the electrode 
material plays an important role in the 
oxidation-reduction reaction, the choice 
of electrode material has always been 
an important issue. The choice of 
electrode material directly af fects 
the oxidation-reduction reaction in 
the electrolyte. The flame atomic ab-
sorption method is also often used to 
determine the metal content of the 
mixture. This method is an elemental 
measurement and analysis technique 
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that uses the atomic resonance ra-
diation absorption of the substance 
to be measured in the vapor state.  
This method has high sensitivity and 
strong anti-interference ability, but be-
cause of its small working linear range, 
it has a relatively strict limit on the con-
centration of the sample. Therefore, for 
high-concentration samples, the con-
tent can be determined only after di-
lution. As a result, finding a stable and 
accurate determination of copper con-
tent in copper ore is a major problem. 

Although mining brings economic 
benefits to enterprises, it also causes 
huge damage to the environment 
as well as ecological imbalance,  
damaging the health of surrounding 
residents. Heavy metals can pollute 
the soil and pose a high risk of car-
cinogenesis to children near mining 
areas (9). Because heavy metals can-
not be decomposed by microorgan-
isms, they can easily enter the human 
body through the food chain, causing 
heavy metal poisoning (10). Sadeq 
and Beckerman proposed that the 
excessive intake of copper ions af-
fected the reproduction of Cladocera 
(11). Khan and associates proposed 
that human beings accumulate heavy 
metals mainly by eating heavy metal 
contaminated food. If the food grown 
in contaminated land is consumed, 
both children and adults will take in 
a large amount of heavy metals that 
will affect their health (12). Duruibe 
and associates proposed that mining 
activities may release a large amount 
of heavy metals into the environment, 
causing soil and water pollution (13).  
Zhuang and colleagues investigated 
the soil around the Dabaoshan mining 
area, and found that the heavy metal 
content in the soil exceeded the maxi-
mum value of the agricultural soil heavy 
metal content standard; if residents eat 
local rice and vegetables, it will bring 
great risks to their health (14). 

With the increasing scale of ur-
banizat ion in China, the area of 
arable land has decreased sharply 
(15 ) .  T he g over nment  ha s  a l s o 
been advocating the reclamation 

of contaminated soil to reuse it .  
Therefore, this paper proposes the 
use of spec tral data and remote 
sensing information combined with 
machine learning to model  the 
content of heavy metals in the soil, 
analyze the content of heavy met-
als in the mining area, and provide 
guidance for the beneficiation and 
reclamation of enterprises.

The Unugetu Copper Mine in Man-
churia, Inner Mongolia, is a porphyry 
copper deposit with the characteris-
tics of large scale and low grade. The 
mining area is located in the Hulunbuir 
grassland, and the local residents live 
as nomads. Because of continuous 
mining in the mining area, the soil 
was polluted by heavy metals. If the 
soil is not reclaimed in time, it will 
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FIGURE 1: Spectral data for copper ore samples.

TABLE I: Hidden layer activation function

Activation Functions Mathematical Formula

Sigmoid function g(x)= 1
1+e-x

Tanh function g(x)= ex - e-x

ex + e-x

Relu function g(x) = max(x,0)

Sine function g(x) = sin(x)

Remote sensing
image

Collect
copper ore

Ore mining and
land reclamation

Radiation calibration,
atmospheric correction
and other processing

Spectral
experiment and
its preprocessing

BN-ELM
model

Extract spectral
data from remote
sensing images

Copper content in
remote sensing

images

FIGURE 2: Flow chart of heavy metal inversion in the mining area.
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bring health risks to the local inhab-
itants. Therefore, the soil should be 
reclaimed while mining in the mining 
area. Peng and colleagues found that 
gamma PGA can effectively remove 
74.3% copper in soil (16). Through ex-
periments, Jin and associates found 
that phytoremediation can effectively 
control soil heavy metal pollution (17). 
Zhang and Zhou discussed the extrac-
tion efficiency of three kinds of chemi-

cal extractions for soil heavy metals, 
and found that different extraction 
methods should be selected for soils 
contaminated by different heavy met-
als (18). Morong and Aggangan dis-
cussed the possibility of repairing 
heavy metal contaminated areas by 
three tree species of Indian maple, 
Acacia mangium and Eucalyptus uro-
phylla, and found that these three 
tree species can effectively remove 

copper, lead, and cadmium from the 
soil (19). This paper proposes the in-
version of copper mining areas based on 
spectral information and remote sensing 
data, firstly inverting the content of heavy 
metal copper in the mining area, and then 
choosing different soil remediation meth-
ods according to the mined-out areas with 
different concentrations of heavy metals.

Spectral analysis is used to deter-
mine the reflectance and absorbance 
at different wavelengths, based on the 
characteristics of different substances 
having specific spectral characteristics.  
Remote sensing can form multi-spectral 
remote sensing images based on the re-
flectance and absorption of solar radia-
tion on the earth’s surface. Remote sens-
ing technology has the characteristics of 
fast data acquisition, short measurement 
period, and ability to measure dynamic 
sample changes. Wu and colleagues 
used remote sensing information to 
monitor the destruction of vegetation 
and landforms caused by coal mining 
in the Qinghai-Tibet Plateau (20). Song 
and associates summarized the progress 
of remote sensing monitoring in mining 
area boundary recognition and mining 
area land cover changes on the basis of 
previous studies (21). Koruyan and col-
leagues have shown through research 
that remote sensing is a valuable tool for 
management and planning of mining 
operations (22). Charou and associates 
used Landsat 5 and Landsat 8 to moni-
tor the surface characteristics and water 
changes of abandoned land in the min-
ing area (23). The final results show that 
remote sensing data can be used for 
long-term environmental management 
and monitoring of mining area reclama-
tion and restoration.

Machine learning can be divided 
into three main categories: supervised 
learning, unsupervised learning, and 
reinforcement learning. Supervised 
learning can also be divided into two 
categories. The first is classification, 
and the other is regression. In regres-
sion, machine learning can use the 
training data to adjust parameters and 
then make predictions on the test set 
data. This method has very powerful 
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FIGURE 4: Illustration of BN-ELM network structure.

TABLE II: Coefficient of determination (R2) values for BP, RBF, ELM, and BN-ELM

BP RBF ELM BN-ELM

0.667 0.121 0.664 0.814

0.442 0.003 0.641 0.807

0.276 0.018 0.482 0.776

0.612 0.232 0.609 0.805

0.269 0.156 0.677 0.867
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data fitting capabilities, so more and 
more researchers have begun to use 
machine learning to conduct mining 
area research. Wei and associates 
used an improved convolutional neu-
ral network (CNN) to achieve accurate 
classification of features of lithofacies 
(24). Liu and colleagues used the com-
bination of data and machine learning 
to explore the problem of mineral re-
source prediction, and used the Zhao-
jikou lead-zinc deposit in Anhui as an 
example to establish a CNN model 
(25). The prediction accuracy of the 
network model can reach 0.93. Le and 
associates established a coal classifi-
cation model using spectral data and 
multilayer extreme learning machine 
algorithm, and correctly predicted the 
distribution of different coals (26). 

Extreme learning machine (ELM) 
(27) is a typical feedforward neural 
network, and it does not need to up-
date the connection weights by the 
gradient descent method. In this al-
gorithm, the connection weight of 
the hidden layer and the input layer 
and the threshold of the hidden layer 
are randomly generated, and then 
the parameter β is solved by the least 
square method to obtain the unique 
optimal solution. Moreover, this al-
gorithm only needs to manually set 
the number of neurons, and does not 
require parameter adjustment dur-
ing network operation. Therefore, the 
ELM algorithm has the advantages 
of simplicity and fast running speed. 
Because the ELM algorithm has ad-
vantages that traditional neural net-
works do not have, more and more 
researchers have begun to study this 
algorithm. The setting of hidden layer 
nodes in neural networks can often 
only be based on empirical formulas, 
and neural networks are very sensi-
tive to hidden layer nodes. Therefore, 
Hang and others proposed the incre-
mental extreme learning machine (I-
ELM) (28). The I-ELM algorithm adds 
a neuron to the hidden layer during 
each learning process until the error 
generated by the algorithm can reach 
the ideal value. To fur ther improve 

the convergence of I-ELM, Huang 
proposed the Convex incremental 
extreme learning machine (Convex 
I-ELM) (29). Contrary to the incre-
mental extreme learning machine 
algorithm, Rong proposed a pruning 
extreme learning machine (P-ELM) 
(30). This algorithm first constructs 
a neural network with many neurons, 
then measures the contribution of 
each neuron according to the set 
criteria, and finally gradually de-
letes redundant neurons to achieve 
the final simplified neural network. 
Based on P-ELM, Miche proposed 
an optimal pruning extreme learn-
ing machine that can handle classi-
fication and regression problems at 
the same time (31). This paper pro-
poses the batch normalization–ex-
treme learning machine (BN-ELM). 
In this algorithm, the output matrix 
of hidden layer is standardized to 
make the output of hidden layer fall 
within the sensitive range of activa-
tion function as much as possible, 
and avoid internal covariate shif t. 
This method improves the gener-
alization performance and sample 
learning ability of ELM.

Spectral Experiment and 
Remote Sensing Data Processing 
Location of Unugetu Copper Mine
The Unugetu Copper Mine is located in 
the Hulunbuir Prairie in Manzhouli, Inner 
Mongolia. It is currently the first modern 
large-scale non-ferrous metal mine in the 
high and cold area of China. The Unugetu 
Copper Mine is open-pit mining. The lati-
tude and longitude of the mining area is 
117° 14’ -117° 22’ east longitude and 49° 22’ 
-49° 30’ north latitude. Figure 8a is a satel-
lite image of the Unugetu Copper Mine.

Spectral Data
We collected 128 copper ore samples 
from the Unugetu Copper Mine, on August 
20, 2017. We cleaned and dried the surface 
of the samples, and then grounded them 
into a powder. After the sample preparation 
was completed, we used the SVC HR-1024 
portable spectrometer to perform spec-
trum experiments on each sample. 

In the spectrum experiment, a white-
board calibration was performed every 
ten replicates of the spectrum measure-
ment. We conducted three replicate 
measurements on each sample to re-
duce measurement errors. We averaged 
the three replicates for each sample as its 
spectral data. After the completion of the 
spectrum measurements, the final spec-
tral data of the copper ore for calibration 
was obtained by data preprocessing op-
erations, such as coarsening and band 
fitting of the measured spectral data.  
Figure 1 shows the reflectance of copper 
ore samples at different wavelengths.

Remote Sensing Data
We downloaded Landsat-8 multispec-
tral data from the U.S. Geological Sur-
vey website, and then used ENVI to 
perform radiometric calibration, atmo-
spheric correction, image fusion, and 
other processing on the downloaded 
Landsat-8 multispectral data. Finally, 
as shown in Figure 8b, a multispectral 
image of the Unugetu copper mining 
area was obtained. Then used ENVI 
Class to extract the spectral data cor-
responding to each pixel in Figure 8b 
as the final remote sensing data.

Experimental Ideas
We used the spectral data in the train-
ing set as input and the copper con-
tent as output to train the BN-ELM 
model. The spectral data in the test 
set were then used as input to predict 
the content and evaluate the model. 
Finally, using the extracted remote 
sensing data as the input of BN-ELM 
model, the corresponding copper 
content of each pixel was obtained. 
The copper content of the whole min-
ing area can be performed by this 
method, thus providing guidance for 
the mining and reclamation of the min-
ing area in the future. The research 
idea is shown in Figure 2. 

Experimental Method
Extreme Learning Machine
ELM is a typical feedforward neu-
ral network that can initialize the 
input weights and biases randomly,  
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and solve the output weights by 
the least square method. Suppose 
there are N arbi t rar i ly  d i f ferent 
samples, where xi = [xi1, xi2, ..., xin]T 
ϵ Rn, ti [ti1, ti2, ..., tim]T ϵ Rm. The ELM 
calculation formula is:

[1]
fL(x) = ∑ βi gi (x)= ∑ βi g(ωi*xj+bi),j=1,... ..., N

L

i=1 i=1

L

In equation 1, ω is the randomly ini-
tialized input weight, bi is the ran-
dom initialization bias, L is the num-
ber of hidden layer nodes set, g is 
the activation function, xj is the num-
ber of inputs for each sample, and βi 
is the weight of the output layer and 
the hidden layer. Simplify equation 1  
to get:

Hβ=T                        [2]

And using equation 2, we expand it to 
equations 3 and 4,

[                                              ]g(ω1*x1+b1)       •••         g(ωL*x1+bL)

g(ω1*xN+b1)               g(ωL*xN+bL)N×L

  •••

• 
 •

  •

• 
 •

  •

  •••

H=

[3]

[    ] [    ]βT

• 
 •

  •β= T=
1

βT
L      L×m

tT
1

tT
N      N×m

[4]

We solve equation 2 by the least 
squares method:

Minimize: ||Hβ–T ||            [5]

Using the two theorems proposed 
by Huang, we can get equation 6.

β=H+T               [6]

Where H+ is the inverse matrix of 
H obtained by SVD decomposition, 
and Huang proved that β  exists 
and is unique.

Batch Normalization-Extreme
Learning Machine
In the ELM algorithm, the ac tiva-
tion function can introduce nonlin-

ear factors into the model, possibly 
making the input and output a non-
linear relationship. The activation 
function can also enable the neu-
ral network model to better solve 
complex problems and improve the 
generalization performance of the 
network. Commonly used ac tiva-
tion functions are shown in Table I.

Sigmoid function (also known as 
logistic function )  is used for the 
hidden layer neuron output, and 
its value range is (0,1). The graph 
of the sigmoid function presents an 
S-shaped curve. Because the out-
put range of the sigmoid function 

is (0,1), the sigmoid func tion can 
be used to compress data, and is 
suitable for forward propagation. 
However, when the absolute value 
of  the input var iable i s  g reater 
than 4, saturation will occur, and 
the output wi l l  become insensi -
tive to small changes in the input. 
The tanh function is also called the 
hyperbolic tangent func tion, and 
its value range is [-1,1]. As shown 
in Figure 3; the tanh function also 
has saturation. By observing Figure 
3, we found that when the absolute 
value of the input variable is greater 
than 4, the sigmoid and tanh func-
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tion activation functions are close to output saturation.  
At this t ime, the output is not sensit ive to subtle 
changes in the input. Using the rectified linear activa-
tion function (ReLU) will cause some neuron necrosis. 
At this time, the gradient of the neuron is 0, and no 
longer responds to any data. When the range of the 
input variable value is too large, the sine function is 
not a monotonic function. 

To solve the saturation problem, we added a BN 
layer in front of the hidden layer (32). Figure 4 shows 
the network structure of the BN–ELM. The BN layer 
can make the output of the hidden layer fall on a nor-
mal distribution with a mean of 0 and a variance of 1.  
I t  can be seen f rom Figure 5 that the probabil i t y 
that the value of each data is within [-2,2] is 95.45%.  
Therefore, the training of the BN layer can not only 
make the output of the hidden layer fall between [-2, 
2] as much as possible, but can also avoid an internal  
covariate shif t.

Algorithm Flow of BN–ELM 
In the BN–ELM algorithm, f irs t randomly generate 
weight w and threshold b that conform to a Gaussian 
distribution with a mean value of 0 and a variance of 
1. Because the hyperspectral remote sensing data has 
only seven dimensions, we assume that the 7-dimen-
sional data conforms to the Gaussian distribution, and 
then normalize the spectral data with a z-score. Figure 
6a shows the distribution of spectral data after z-score 
normalization. Figure 6b is a Q-Q char t of spectral 
data. It can be seen from Figures 6a and 6b that the 
spectral data of each group obeys the standard Gauss-
ian distribution.

Then, we assume that the spectral data conforms to 
a Gaussian distribution with a mean of 0 and a variance 
of 1, that is: X ~ N (µ1; σ1

2). We make the weight W and 
the threshold B also conform to the Gaussian distribu-
tion, namely: W ~ N (µ2; σ2

2)., B ~ N (µ3; σ3
2). So TEH = 

WX + B also conforms to the Gaussian distribution, the 
proof is as follows.

According to the probabili t y densit y func tion of 
Gaussian distribution, we can get:

X ~ f (x)= e 
–1

2�σ1

(x–µ1)
2

2σ1
2                       [7]

W ~ g (x)= e 
–1

2�σ2

(x–µ2)
2

2σ2
2

                       [8]

B ~ g (x)= e 
–1

2�σ3

(x–µ2)
2

2σ3
2

                       [9]

First, we prove that WX = g(x) f(x) conforms to Gaussian 
distribution. It can be inferred from equation 7 and equation 8: 
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So, g(x) f(x) conforms to the Gaussian distribution with a 
scaling factor of ɑ:
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From equation 14, we can find that, because of the calcu-
lation of the hidden layer fully connected, the output matrix 
TEH no longer conforms to the Gaussian distribution with 
the mean of 0 and variance of 1. We therefore performed 
batch normalization processing on TEH. First, we calculate 
the mean and variance of each hidden layer node. 

µTEH = ∑1
L

xi

L

i=1
[15]

σ2
    = ∑1

L
(xi–µTEH)2

L

i=1
TEH [16]

TEH* =
TEH – µTEH

σTEH
2

[17]

It can be inferred from equation 15 and equation 16 that, if 
the training sample is large enough, the mean and variance 
of the hidden layer nodes will be more stable. The mean and 
variance of the internal offset generated during the train-
ing of the training set can be used to replace the mean and 
variance generated by the internal migration of all data.  
Therefore, there is no need to recalculate the mean and vari-
ance of hidden layer nodes when testing on the test set. After 
batch normalization processing, the hidden layer matrix obeys 
a Gaussian distribution with the mean of 0 and the variance of 1. 

The output matrix of the hidden layer with the same dis-
tribution as the original data is obtained. We then use the 
activation function to calculate the hidden layer matrix, and 
finally use the least square method to get the output weight β. 
After the calculation of the BN layer, not only can the hidden 
layer value fall within [-2,2] as much as possible, but it will also 
retain the characteristics of the original input.
 
Experimental Results and Discussion 
Comparison of Neural Network Algorithms
In this paper, four neural network algorithms of BP, RBF, 
ELM, and BN–ELM are used in the Matlab 2016a environ-
ment to compare and verify the feasibility of the BN–ELM 
algorithm. Multiple cross-validation methods were used 
for experiments to prove the stability of the BN–ELM algo-
rithm. The experimental results are shown in Tables II and III.  
From these tables, it can be seen that the BP neural net-
work can easily fall into the local optimal solution during the 
back propagation, so it presents an unstable phenomenon. 
The RBF neural network has the worst prediction result. The 
ELM does not need to calculate the weight w and the thresh-
old b in reverse, so it will not fall into the local optimal solution.  
But in the ELM algorithm, because of the saturation of 
the activation function, the output is not sensitive to small 
changes in the input. BN–ELM solves the saturation problem 
of the ELM activation function, and keeps the hidden layer 
matrix within [-2,2] as much as possible. By comparison, it can 
be found that BN–ELM has the highest coefficient of deter-

TABLE III: Root mean square error (RMSE) values for BP, 
RBF, ELM, and BN-ELM

BP RBF ELM BN-ELM

6.122x10-3 147.199 6.149x10-3 3.764x10-3

12.672x10-3 2.632 8.327x10-3 4.139x10-3

11.598x10-3 56.254 7.819x10-3 5.392x10-3

11.943x10-3 2000.713 12.313x10-3 3.770x10-3

22.592x10-3 509.659 8.824x10-3 3.655x10-3
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mination and the smallest root mean 
square error. Figure 7 is a comparison 
of the best results of the cross-check. 

Remote Sensing Inversion of Mining Area
We used NEVI Classic software to ob-
tain all the spectral information in Figure 
8b. Because we are using the Landsat 
8 multi-spectral image, each pixel can 
extract the reflectance of seven bands, 
and each band corresponds to the spec-
trum of the copper ore collected from 
the Wunugetushan copper mine data.  
After BN–ELM simulation, the copper 
content corresponding to the whole Fig-
ure 8b is obtained. Finally, we plotted the 
copper content distribution of the entire 
mining area, as shown in Figure 8c.

Conclusion
With the continuous mining of the area 
studied, high-grade ore has been ex-
hausted. Therefore, attention should 
be paid to low-grade ores. However,  
the low-grade ore contains less ore and 
has low mining value, so it brings less 
benefit to enterprises. The traditional 
copper ore grade determination is costly 
and difficult to be determined in large 
quantities. This paper puts forward the 
method of using spectral information 
and BN–ELM modeling to analyze the 
grade of copper ore. This method has the 
advantages of high speed and low cost. 
Finally, we use Landsat 8 remote sensing 
data to analyze the content of the whole 
mining area, providing guidance for future 
mining and land reclamation.
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Simultaneous Detection of Nitrate 
and Nitrite Based on UV Absorption 
Spectroscopy and Machine Learning

Using spectrophotometry to acquire 
nitrate and nitrite concentrations is 
common in water quality monitoring. 
However, it is challenging to achieve 
the measurement with high accuracy 
because of the spectral signal over-
lapping. In this article, a hybrid ma-
chine learning approach is proposed 
to simultaneously determine nitrate 
and nitrite based on UV absorption 
spectroscopy. All spectral data are di-
vided into four subdivisions according 
to the concentration ratio of nitrate 
and nitrite. In each subdivision, a re-
gression submodel is established ac-
cording to the sample characteristics.  
First, the sample is voted to a category 
by a joint classifier and then processed 
by the corresponding submodel to pre-
dict the concentrations of nitrate and 
nitrite. This method has been further 
optimized by considering the interfer-
ence of foreign ions. The proposed ap-
proach improves the performance of 
spectral direct detection and is there-
fore a promising tool for fast determi-
nation and continuous monitoring in  
environmental applications.

Hang Zhang, Qiong Wu, Yonggang Li, and Sha Xiong 

Nitrate (NO3¯) and nitrite (NO2¯) 
are the most common forms 
of nitrogen that are found in 

environments, physiological systems, 
and food industries (1,2). Excessive ni-
trate and nitrite lead to the eutrophi-
cation of an ecosystem, which intro-
duces fatal threats to human health, 
such as methemoglobin syndrome (3).  
Considering their pollution hazards, 
regulations have been imposed to set 
legal limits of nitrate and nitrite in water 
worldwide. Therefore, it is critical to 
find convenient and economical meth-
ods to monitor these trace analytes.  
A broad range of techniques have been 
evaluated to monitor nitrate and nitrite 
in water, including electrochemical 
detection, chemiluminescence, colori-
metric analysis, and UV spectrophotom-
etry (4–7). Among various approaches,  
direct UV absorption spectrophotom-
etry has attracted attention in the past 
decades for its high speed, reagent-
free, operational simplicity, and ultralow  
cost operation (8–10). 

The absorption spectra of nitrate and 
nitrite are similar and nearly overlap in 
the UV region (11). Hence, it is difficult 
to separate nitrate and nitrite contri-
butions from the collected spectra.  
Wetters and Uglum first proposed to 
use the secondary peak of the absorp-

tion spectra to detect nitrate and nitrite 
at high concentrations (12). After that, 
Suzuki and Kuroda used the isosbestic 
absorption points of the second de-
rivative spectra for determining ni-
trate and nitrite simultaneously (13).  
Both methods were based on the intrin-
sic absorption properties of nitrate and 
nitrite at two special wavelengths, and 
the models would be greatly affected 
by the interfering substances. To in-
crease the accuracy, several methods 
that employed multiple wavelengths 
were proposed to achieve simultane-
ous measurements of nitrate and nitrite.  
Dong and others used a matrix algo-
rithm to select six points in a narrow 
wavelength interval (14). Rieger and 
others adopted a multivariate correc-
tion algorithm with a total of 256 wave-
lengths uniformly spaced in the range 
of 210–400 nm (15). Sandford and others 
established the reference spectra of ni-
trate, nitrite, and bromide to achieve the 
simultaneous measurement based on 
the deconvolution method (16). However, 
these approaches for choosing an opti-
mal modeling range are too approximate 
and inevitably some useful spectral infor-
mation is lost. In addition, environmental 
noise, experimental error, and redundant 
information with low information content 
is contained in the spectral data. All such 
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factors reduce the stability and accuracy 
of the measurement.

Machine learning methods offer 
versatile and powerful solutions in 
spectra analysis, such as characteristic 
extraction, component classification, 
and concentration prediction (17–19).  
Recently, the combination of UV spec-
troscopy and machine learning has 
been successfully applied in the rapid 
detection of multiple compounds 
(20–22). However, most of the machine 
learning methods are based on a single 
model, which has prominent limita-
tions in optimizing evaluation accuracy.  
Hence, some researchers have tried to 
build a hybrid model based on cluster-
ing algorithms to predict certain water 
quality parameters (23). The hybrid 
model has demonstrated a higher pre-
diction accuracy than a single model.

In this work, a hybrid machine learn-
ing model is developed for direct 
measurement of nitrate and nitrite 
based on UV absorption spectroscopy.  
First, a joint classifier (JC) is utilized 
to divide the samples into four sub-
regions based on the concentration 
ratios between nitrate and nitrite.  
Then, a submodel is selected for re-
gression prediction in each subregion. 
To the best of our knowledge, this 
model is the first demonstration of 
simultaneous detection of nitrate and 
nitrite using a hybrid machine learning 
model combining classification and 
regression algorithms. Compared to 
other direct spectral methods, the 
proposed method with the advan-
tages of machine learning can more 
effectively use the spectral informa-
tion of the samples, enhancing the 
sensitivity of detection, especially for 
extremely low concentrations. For ex-
ample, the average relative errors in 
determining nitrate and nitrite are ap-
proximately 4–5% by using the second 
derivative spectroscopy (13) and matrix 
method (14). The proposed machine 
learning method reduces the average 
relative errors to a value below 1%.  
In addition, the interference effects of 
wavelength selection and foreign ions 
on this method has been discussed.

Theory and Methods
Classification
Support vector machines (SVM) are 
multiclassifiers based on the statistical 
learning theory (24). The basic model 
of SVM is defined as the linear classi-
fier with the largest interval in the fea-
ture space. In this work, the spectral 
data are normalized before being pro-
cessed by SVM because the conver-
gence of the training network can be 
accelerated by mapping the data to a 
range of 0~1. Because abundant data 
increase the quantity of computation,  
principal component analysis (PCA) 
(25), which can eliminate multicollinear-

ity existed among variables, is used to 
reduce the data dimension of the input 
layer. The particle swarm algorithm 
(PSO) (26) optimizes the penalty factor 
and kernel parameters in the modeling 
process. The overall program is built on 
the Libsvm toolbox (27,28).

Logistic regression (LR) is an algo-
rithm that assumes data obey a binomial 
distribution and applies the maximum 
likelihood function to achieve binary 
classification of samples (29). When the 
samples are going to be divided into 
multiple categories, LR is employed to 
build an independent binary classifier 
for each category.
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Random forest (RF) is another algo-
rithm for classification (30). It consists 
of multiple decision trees, in which the 
training samples are obtained by boot-
strap sampling from the original training 
set. In addition, RF utilizes random fea-
ture selection in the growth process of 
the decision tree, which prevents over-
fitting. For classification, an unknown 

sample is sent to each decision tree for 
prediction, and then voted for classifica-
tion. The class with the most votes is the 
final classification result. 

The above three classifiers are used 
as the base classifiers to vote for the cat-
egories of the same sample, which can 
effectively improve the reliability and 
robustness of the system.

Feature Selection
Modeling with all wavelength points in-
creases model complexity and reduces 
accuracy because of the huge amount 
of data and redundant information in the 
full-range spectrum. Each wavelength 
point is different in terms of the amount 
of useful information and the degree of 
interference by other ions. Therefore,  
it is necessary to screen out useful vari-
ables with high sensitivity and correla-
tion to the target ions, while eliminating 
redundant variables sensitive to foreign 
ions. In this work, stability and variable 
permutation (SVP) is used to choose the 
characteristic wavelengths. Variables are 
selected through multiple iterations and 
competitions in SVP (31). After all itera-
tions are completed, model population 
analysis is employed to obtain the opti-
mal subset of variables with the minimum 
mean and relatively low standard devia-
tion value of root mean square error.

Regression Model
A regression model is used to establish 
the relationship between input variables 
and output variables. As the most com-
monly used regression algorithm in 
spectral multivariate correction analysis, 
partial least square (PLS) is a perfect com-
bination of multivariate linear regression,  
canonical correlation analysis, and PCA 
(32). As an alternative regression algo-
rithm, least squares support vector ma-
chine (LSSVM) is an improved version 
of the SVM algorithm. It uses the least 
squares linear system as the loss function, 
and reduces the computational complex-
ity by solving a set of linear equations in-
stead of the more complex quadratic pro-
gramming method used by the traditional  
SVM (33).
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FIGURE 3: Flow chart of the machine learning program framework.

TABLE I: Comparison of the results of different algorithms for simultaneous determination of nitrate and nitrite

Evaluation 
parameters

Centralized Modeling
(SVP-PLS)

Division Modeling 1 
(JC-SVP-PLS)

Division Modeling 2 
(JC-SG-SVP-LSSVM)

NO3¯ NO2¯ NO3¯ NO2¯ NO3¯ NO2¯

ARE  0.0416 0.1026 0.0044 0.0054 0.0114 0.0158

MRE  0.3684 0.7640 0.0201 0.0723 0.0737 0.0907

R2 0.9993 0.9966 0.9999 0.9999 0.9998 0.9993

RMSEP 0.0254 0.0575 0.0059 0.0034 0.0090 0.0169
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Experiments
All reagents were of analytical grade 
(Sinopharm Chemical Reagent Co., 
Ltd) and used without further purifica-
tion. Nitrate and nitrite stock solutions  
(100 mg N/L) were prepared by dis-
solving 0.7221 g of potassium nitrate 
and 0.4928 g of sodium nitrite in 1 L 
of deionized water, respectively. A se-
ries of measurements were made for 
nitrate and nitrite solutions with 10 dif-
ferent concentrations, ranging from  
0.1 to 3.0 mg N/L. A total of 100 groups 
of mixture solutions were investigated 
and used as training data in the machine 
learning models. Instead of dividing the 
samples into calibration and validation 
sets, leave-one-out cross validation 
(34) was used as an evaluation strategy. 
These solutions were prepared by se-
rial dilution in deionized water from the 
nitrate:nitrite stock solution. Sodium 
chloride, sodium bromide, sodium car-
bonate, sodium bicarbonate, calcium 
chloride, magnesium chloride, and 
humic acid were added in the mixture 
solutions for the interference studies.

UV spectra were acquired with a 
dual beam UV-vis spectrophotom-
eter (UV-2600, Shimadzu). Deionized 
water was used as a reference solution. 
Samples were scanned between 190 
and 400 nm in a quartz cuvette with 
a 10-mm optical pathlength. Scans 
were conducted at 120 nm/min with 
a resolution of 1 nm. Each measure-
ment was repeated three times to  
ensure reproducibility.

Results and Discussion
Division Based on Concentration
Figure 1a shows the UV spectra of ni-
trate and nitrite solutions, which both 
have a wide absorption peak between 
190–250 nm, thus several methods for 
the measurement of nitrate and nitrite 
concentrations depend on the absor-
bance at wavelengths approximately 
at 200 nm (12–14,16). In fact, there is a 
second absorption peak for nitrate and 
nitrite above 250 nm, as shown in the 
insets of Figure 1a. Because the second 
absorption peak is relatively weak and 
has a small value, the spectrum above 

250 nm in Figure 1a was flattened by 
the high absorbance for the region 
below 250 nm. However, this spectral 
region may still contain useful infor-
mation for modeling. Figure 1b shows 
the spectral curves of four mixture 
samples with different concentrations.  
The absorbance difference between the 
mixtures of nitrate and nitrite with the 
maximum and minimum concentrations 
is nearly 40 times. In a preliminary study,  
we analyzed the spectral data with cen-
tralized modeling, in which the mixture 
solutions with different concentrations 
were calculated by the same model.  
It has been found that centralized mod-
eling has insufficient sensitivity to pre-
dict components at low concentrations 

because of the wide modeling range  
of samples. 

To achieve a more accurate predic-
tion, the concentrations of nitrate and 
nitrite are divided into four subregions 
for separate modeling. Each subregion 
has its own distinct characteristics re-
lated to the concentration ratio be-
tween nitrate and nitrite. In region 1, 
the concentrations of nitrate and nitrite 
are both low; in region 2, the nitrite con-
centration is much higher than that of 
nitrate; in region 3, the nitrite concentra-
tion is much lower than that of nitrate; 
and in region 4, the concentrations of 
nitrate and nitrite are both high. In this 
way, each submodel has higher predic-
tion accuracy than centralized modeling 
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as it adapts to the sample characteris-
tics of each region. 

We performed modeling analysis on 
100 experimental samples, and com-
pared the performance of centralized 
modeling and division modeling in 
predicting the concentrations of nitrate 
and nitrite. The results are shown in  
Figure 2. Although the average relative 
errors in centralized modeling are small 
(<10%) with relative high concentration 
of analytes, it greatly increases when 
the concentration is lower than 0.4 mg 
N/L. By contrast, the division modeling 
always gives a stable and satisfied per-
formance with an average relative error 
less than 5%. In view of the insufficient 
predictive sensitivity at low concentra-
tions, the critical concentration used 
to divide subregions is chosen to be 
placed at a lower position. We com-
pared the modeling results, which set 
the critical concentrations as 0.3, 0.4, 
and 0.8 mg N/L, respectively. The divi-
sion modeling gives a highest accuracy 
(~98%) and lowest average relative er-
rors (~0.44%), when the critical concen-
tration is 0.4 mg N/L. Therefore, the crit-
ical concentration is set to 0.4 mg N/L 
for the following modeling procedures.

Classification
The overall program framework is 
shown in Figure 3. First, the collected 
spectral data are classified by three 
classifiers (SVM, LR, and RF) indepen-
dently. Based on voting results, the data 
are sent to the submodels or analyzed 
by the centralized modeling. In each 
model, SVP is used to select character-
istic wavelength, and PLS is utilized to 
build the regression model. Finally, the 

predicted concentrations of nitrate and 
nitrite are given out simultaneously.

Because the program is executed 
sequentially, and to avoid the classi-
fication error from affecting the sub-
sequent regression accuracy later, a 
joint classifier composed of SVM, LR, 
and RF is used to vote on the sample 
category. The sample is classified into 
the category with the majority of votes 
(≥2). If the categories selected by the 
three classifiers are all different, the 
classification result is determined to 
be unreliable and a corresponding 
reminder is given. In this case, a sin-
gle non-classified regression model 
is used for prediction, so that the 
accuracy can be at least consistent 
with that of centralized modeling. It is 
worth mentioning that each submodel 
is built with samples distributed on the 
classification boundary to avoid larger 
prediction errors caused by classifica-
tion errors. Because the probability 
of classifiers making errors at these 
points are greater. In the experiments, 
the classification accuracy using RF, 
LR, and SVM reached 94%, 97%, and 
98%, respectively. There were 11 sam-
ples that were misclassified by the 
three base classifiers among the 100 
experimental samples. Three samples 
were actually located on the classifi-
cation boundary, so their influence on 
the prediction results can be ignored. 
In addition, other samples that were 
misclassified in a single classifier fi-
nally got the right classification results 
because of the voting mechanism. The 
fault tolerance and robustness of the 
system are greatly improved because 
of the joint classifier.

Wavelength Selection
The optimal wavelength set is sup-
posed to combine the spec i f ic 
characteristics of nitrate or nitrite. 
For each subregion, SVP selec ts 
only one subset of variables (that is 
wavelength) for nitrate and nitrite, 
respec t ively.  Parameters in SVP 
are optimized using grid search.  
The model using the specialized 
subset of variables can achieve bet-
ter performance because it adapts 
to the characteristics of the target 
ions in a narrow concentration range.  
The numbers of optimal variables are 
different in the submodels, which are 
changing from eight to 34. The num-
ber is related to the spectral similar-
ity of the samples in each subregion. 
The regression models are buil t 
based on these variables.

Performance Evaluation
Four classical parameters were em-
ployed to evaluate the performances 
of the established models, including 
average relative error (ARE), maximum 
relative error (MRE), root mean square 
error of prediction (RMSEP), and deter-
mination coefficient (R2). The RMSEP is 
expressed as:

RMSEP = 
n – 1

n
i=1(yl – yi)

2∑
[1]

where n is the total number of samples, 
ŷi is the actual value of sample i, and 
ŷi is the predicted value of sample i. 
The determination coefficient (R2) is  
expressed as:

TABLE II: The influence of foreign ions on the simultaneous determination of nitrate and nitrite by the proposed method

Parameter
Foreign Ion

Ca2+

(100)a
Mg2+

(100)a
CO3

2-

(5)a
HCO3¯

(100)a
Br¯

(0.1)a
Cl¯

(500)a
HA
(3)a

Number of
misclassified samples 1 1 1 1 0 0 8

ARE
Nitrate 0.0272 0.0226 0.0849 0.0712 0.0550 0.0395 >0.15

Nitrate 0.0584 0.0483 0.0594 0.1058 0.0722 0.0559 >0.15

a: The unit of the number in parentheses is mg/L.
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R2 = 1 –
n
i=1(yl – yi)

2∑
n
i=1(yl – yi)

2∑ [2]

where ŷi is the average value of all the 
testing samples. According to equations 
1 and 2, the model performs better with 
lower RMSEP and higher R2. 

The performances of different al-
gorithms are compared in Table I. 
The centralized modeling only builds 
a single model, in which SVP and PLS 
are used for wavelength selection and 
regression modeling, respectively.  
Division modeling 1 uses the joint 
classifier for classification, followed 
by submodeling with SVP and PLS.  
Division modeling 2 also employs joint 
classifier. Then, the Savitzky-Golay 
method (35) is used to obtain the sec-
ond derivative of the original spectral 
data, which are subsequently pro-
cessed by SVP. Finally, the regression 
model is established using LSSVM. 
To enhance the generalization ability 
of the model in the entire concentra-
tion range, the centralized modeling 
inevitably sacrifices the local accuracy, 
which has much greater error values 
as shown in Table I. Compared with 
it, division modeling 1 uses the same 
feature selection and modeling meth-
ods, but only employs the joint classi-
fier to classify the samples in advance. 
This method improves the accuracy of 
prediction significantly, especially for 
low concentration samples. When the 
centralized modeling is replaced by 
division modeling 1, the average rela-
tive error is reduced from 4.16 to 0.44% 
for nitrate, and from 10.26 to 0.54% for 
nitrite. The maximum relative error of 
nitrate has even decreased 18 times.  
It proves that division modeling has 
the potential to expand the modeling 
range without reducing the prediction 
accuracy. Division modeling 2 employs 
the differential preprocessing to ex-
pand the distance between the spec-
tral peaks of nitrate and nitrite that are 
almost overlapped. However, the results 
show that the effect is not significant,  
because the spectra of the two analytes 

in the 200–250 nm range are approxi-
mately parallel, which yields the same 
information trends using the same pre-
treatment . The maximum relative error 
of division modeling 2 is close to four 
times that of division modeling 1 in the 
prediction of nitrate. It is because most 
of the spectral signals still have linear 
additivity in a two-component experi-
mental system with relatively simple 
spectra. It is consistent with the model-
ing scenario of PLS, which is a multiple 
correction method based on linear re-
gression. In contrast, LSSVM is a nonlin-
ear correction method. In addition, PLS 
can also overcome the interference of 
nonlinear factors to a certain extent,  
bringing advantages in spectral multi-
variate correction analysis.

Influence of Foreign Ions
In actual water samples, there are many 
other ions that also absorb UV light, 
which probably affect the measure-
ment of nitrate and nitrite (14,36,37). 
The inf luence of several common 
ions in water has been investigated.  
The individual spectra of these sub-
stances are shown in Figure 4a. It can 
be seen that most of the foreign ions 
only have absorption at 190–205 nm, 
whereas humic acid (HA) representing 
organic matters has an absorption band 
after 205 nm that is not negligible.

Wavelength selection plays an impor-
tant role in reducing the influence of for-
eign ions. For instance, 500 mg/L chlo-
ride ion was added into eight groups 
of nitrate and nitrite mixtures with four 
concentration levels (0.2, 0.3, 1.6, and 
2 mg N/L). The concentrations of the 
eight samples are symmetrically distrib-
uted in four subregions. We compared 
the performance of three models with 
different modeling methods. Model A 
uses 200 nm as the starting wavelength 
for centralized modeling. Model B and 
Model C use 200 nm and 205 nm as the 
starting wavelengths for division mod-
eling, respectively. The final prediction 
results are shown in Figure 5. It can be 
seen that the predicted concentrations 
using model A are far from the true val-
ues. The relative errors are even more 

than 50% for low concentration sam-
ples (<0.4 mg N/L). On the contrary, 
Models B and C are much closer to the 
true values, which verifies the improve-
ment by using the division modeling 
method. The average relative errors are 
18% and 6% in Models B and C, respec-
tively. It means that the chloride ions 
have little influence on the prediction 
of nitrate and nitrite, when the start-
ing wavelength of modeling is delayed  
to 205 nm. 

The concentrations of nitrate and ni-
trite mixtures were measured with vari-
ous interfering ions as shown in Table 
II. Concentration of a foreign ion was 
chosen when its absorbance equaled 
0.1 approximately at 205 nm. Each type 
of foreign ions was added to the eight 
groups of nitrate and nitrite mixtures. 
Table II shows the influence of these 
foreign ions on the prediction results of 
Model C. The joint classifier still worked 
well in the presence of foreign ions,  
except for HA. Misclassification occurs 
when samples are assigned to a differ-
ent category than the one they should 
be in. For example, a sample in region 
1 is assigned to region 2. The experi-
mental results showed that one sample 
was misclassified after adding Ca2+, 
Mg2+, CO3

2-, and HCO3
-. It is worth not-

ing that the misclassified samples are 
all in region 3 with the same concentra-
tions of nitrate (1.6 mg N/L) and nitrite 
(0.2 mg N/L). A possible explanation 
comes from the concentration ratio of 
nitrate to nitrite in this sample, which is 
the highest among the eight samples. 
The absorption spectra of nitrate and 
nitrite are almost overlapped. When the 
concentration ratio of nitrate to nitrite is 
increased, it is more difficult to identify 
the contribution from nitrite in the spec-
tra of mixture samples. Because the 
proportion of nitrate and nitrite in the 
total absorbance is a potential internal 
consideration in the model, the classifier 
may be affected by the concentration 
ratio. For the same reason, the relative 
error in the determination of nitrite is 
often higher than that of nitrate.

The average relative error caused 
by the interference of foreign ions 
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mostly can be control led within 
10%. Because of the wide absorp-
t ion band of HA in the range of 
205 – 40 0 nm, af ter adding HA to 
the mixture, the absorbance of the 
sample in this spectral range will 
increase as shown in Figure 4b. In 
addition, the increase at each wave-
length point may not be the same. 
This change causes the classifier to 
make wrong judgments on the con-
centration of nitrate and nitrite, re-
sulting in misclassification and fur-
ther large prediction errors. Thus, 
al l  eight representative samples 
have a high possibility to be mis-
classified. Therefore, incorporating 
the organic ions into the model-
ing components when there are 
more organic inter ferences in the  
water samples is recommended. 

Conclusion
To summarize, we proposed a hy-
brid machine learning method to 
tackle the challenge of predicting 
nitrate and nitrite simultaneously 
with UV absorption spectroscopy.  
Compared with centralized model-
ing in other spectroscopic meth-
ods, the proposed model provides 
higher accurac y by employing a 
joint classifier before the regression 
modeling. The influence of classifi-
cation, wavelength selection, and 
foreign ions are discussed to opti-
mize the model. This method is fast, 
reagent-free, and potentially useful 
for developing in situ sensors for 
monitoring trace species in marine 
and aquatic environments. In addi-
tion, the proposed methodology 
can also be applied to determine 
mult iple composi te substances.  
The proposed methodology holds 
broad application prospects in water 
quality monitoring, food safety, and 
soil properties qualification. 
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