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Abstract

Senecio jacobaea massively spread in Germany during recent years causing sub-
stantial economic damages to farmers due to its hepatotoxic pyrrolizidine alkaloids
leading to liver failure of cattle and horses. Regulation of Senecio jacobaea in en-
vironmentally protected areas is often done by systematic mowing or digging the
plants out manually since broad application of herbicides is not possible. Temporal
and financial expenses of farmers could be drastically reduced by methods of preci-
sion agriculture utilizing spray drones to apply small amounts of herbicide directly
onto the plant at an early growth stage where the specimens are more responsive to
the herbicide. This requires the automatic detection of Senecio jacobaea in images
collected by the drone which is the topic of this project. A dataset containing 2128
images with 5723 specimens of Senecio jacobaea was collected, annotated, and used
to train a pretrained SSD-MobileNet-v1 which is a single-stage object detector. The
model yielded a mean average precision (mAP) of 21.93% showing that it is possible
to detect Senecio jacobaea from background vegetation of similar appearance. It was
found that halving the training dataset size reduced the model performance by a
factor of 7.61 and that small specimens were detected much less reliably than larger
ones, indicating that plant size plays a major role for the model performance. This
suggests that the model could be significantly improved by increasing the dataset
size and by enlarging the specimens in the model input by using cropped or sliced
images.

Keywords: Deep Learning, Computer Vision, Single-Stage Object Detection,
Senecio jacobaea, Weed Control
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1 Introduction

Senecio jacobaea is one of three species of the Senecio genus that are native in Ger-
many and has spread massively in ruderal areas and extensively used pastures during
the last years causing conflicts between agricultural land-use and environmental pro-
tection [Deutscher Verband für Landschaftspflege e.V., 2017]. Per specimen, Senecio
jacobaea produces up to 100,000 seeds of which up to 80% are germinable and can
persist up to 15 years in the soil making it difficult to regulate the species once
enough seeds are accumulated in the soil of an area of extensive growth [Suter and
Lüscher, 2017].

Senecio jacobaea contains Pyrrolizidine Alkaloids (PAs) proven to be hepatotoxic
to humans but also livestock, especially cows and horses [Lampen, 2017] causing
substantial economical damages to farmers. PAs were also much more likely to
be found in quantities harmful to health in honey produced in areas populated
by Senecio jacobaea [Neumann and Huckauf, 2015]. Therefore, efficient ways of
regulating Senecio jacobaea have to be found with a special focus on environmentally
protected areas where severe interventions like extensive usage of herbicides is not
possible. As of now, specimens have to be plugged and dug out tediously by hand or
the area has to be systematically mowed and the forage has to be disposed [Zehm,
2017].

An alternative to these methods might be found in the field of precision agricul-
ture where Unmanned Aerial Vehicles (UAVs) have been used to automatically spray
herbicides on crop fields reducing costs and risks for farmers [Mogili and Deepak,
2018]. The vision that inspired this project is the idea of a two step weed con-
trol method utilizing Deep Learning (DL) techniques for finding Senecio jacobaea.
One UAV should fly across a field at a higher altitude and collect images using a
downward-pointed camera. In these images, possible candidates of Senecio jacobaea
should be detected and their Global Positioning System (GPS) coordinates should
be mapped. Afterwards, another UAV, equipped with a sprinkling system, should
fly to the mapped coordinates and validate whether the detected candidates are
really Senecio jacobaea and if so spray a tiny amount of herbicide directly onto the
center of the plant. This would likely be most efficient in spring when Senecio jac-
obaea specimens are still in an early growth stage since it was shown that plants in
later growth stages are much less responsive to the same dose of herbicide [Kieloch
and Domaradzki, 2011]. Another option would be to combine the approach with a
field robot to apply the herbicide. Such an approach could drastically reduce the
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temporal and financial expenses of farmers while being much less damaging to the
ecosystem than mass spraying of herbicides. It could thus also pose a viable solution
for removing Senecio jacobaea in protected areas where regulation methods should
be least invasive.

This project focused on the problem of detecting Senecio jacobaea in images which
would likely be the bottleneck for such a weed control system. The object detection
was done using an SSD-MobileNet-v1 [Franklin et al., 2016] which is a type of
DL model, pretrained on the Microsoft Common Objects in Context (MS COCO)
dataset with 91 classes. Object detection refers to finding multiple instances of
different object classes in an image and localizing them by the means of a bounding
box enclosing them which could be used to map the coordinates of Senecio jacobaea
specimens. For implementing the model an NVIDIA Jetson Xavier NX [NVIDIA,
2021], which is an embedded computer designed for DL applications, was used since
it can be mounted onto a UAV and perform object detection in real-time.

Specifically, the work attempts to answer the question whether it is possible to de-
tect Senecio jacobaea at 1m height in images also containing background vegetation
of similar appearance in terms of colour, structure or leaves. Furthermore, it was
investigated how to set up a working toolchain, from the collection and annotation
of raw data, training of the model, to evaluating the finished result. Additionally,
the goal was to find out which factors influence the performance of the model and
what the limitations of such a model are, to gain more insight of how to approach
this problem and yield better results.
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2 Theoretical Background

A Convolutional Neural Network (CNN) is a type of DL model which is widely used
for computer vision tasks. DL refers to a subset of machine learning models which
utilize Artificial Neural Networks (ANNs) which map input data to a certain output
by passing them through a number of computational layers which operate on the
data and pass the modified results to the next layer. CNNs are a subclass of ANNs
which utilize discrete convolutions in their network architecture to extract features
of increasing complexity [Yamashita et al., 2018]. The use of convolutions makes
them especially useful for processing data which is organized into a grid structure
such as images. The output of such a network depends on its architecture; in gen-
eral, there are networks for classification, object detection, and object segmentation.
In classification, an object class is assigned to an image as a whole, while in object
detection, multiple objects can be found in the same image. Lastly, object segment-
ation refers to assigning classes to individual individual regions of the input image.
To be able to solve such a task, a CNN has to be trained on a training dataset
consisting of several thousand up to millions of labelled images [Russakovsky et al.,
2014]. During the training, the network predicts a certain output for the training
data which is then compared with the ground truth labels of the data. The larger
the difference between the two, the higher the error of the network. The parameters
of the network are then adjusted, step by step, as to decrease that error in a process
called backpropagation. After successfully training the model, its parameters should
be fit well to the given task.

The following subsections give a short overview of images as a data type, discrete
convolutions, CNNs, and how the training and application of such models works.

2.1 Image Data
There are different types of image formats which result in different digital repres-
entations of images such as monochromatic or RGB images. Generally, an image
is represented as a 2- or 3-dimensional array of intensity values. The first two
dimensions are the height and width of the image, while the third dimension rep-
resents a colour channel. In the context of CNNs those arrays are called tensors. A
monochromatic image consists of only a single channel and can be represented by
a 2-dimensional tensor where each element represents a pixel in the image and the
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value of the element corresponds to the brightness of the pixel.
Figure 2.1a shows a monochromatic image of the number ‘5’ represented as a

grayscale image. Figure 2.1c shows the 2D tensor representing the image and 2.1b
shows the image overlain with the tensor.

a)
0 4 92 0 16 35 62 102 189 55

0 155 255 226 244 255 255 255 255 67

13 228 243 159 145 139 63 5 0 0

61 255 74 0 0 0 0 0 0 0

135 255 0 0 0 0 0 0 0 0

184 233 81 107 91 45 3 0 0 0

125 255 255 255 255 255 219 29 0 0

0 0 0 0 6 99 240 255 0 0

0 0 0 0 0 0 63 255 104 0

0 0 0 0 0 0 17 236 150 0

0 0 0 0 0 0 55 255 98 0

0 0 0 0 0 0 206 255 0 0

0 0 0 0 0 131 255 124 0 0

0 0 0 57 195 255 181 0 0 0

35 225 255 255 251 134 0 0 0 0

34 186 133 80 19 0 0 0 0 0

b)
0 4 92 0 16 35 62 102 189 55

0 155 255 226 244 255 255 255 255 67

13 228 243 159 145 139 63 5 0 0

61 255 74 0 0 0 0 0 0 0

135 255 0 0 0 0 0 0 0 0

184 233 81 107 91 45 3 0 0 0

125 255 255 255 255 255 219 29 0 0

0 0 0 0 6 99 240 255 0 0

0 0 0 0 0 0 63 255 104 0

0 0 0 0 0 0 17 236 150 0

0 0 0 0 0 0 55 255 98 0

0 0 0 0 0 0 206 255 0 0

0 0 0 0 0 131 255 124 0 0

0 0 0 57 195 255 181 0 0 0

35 225 255 255 251 134 0 0 0 0

34 186 133 80 19 0 0 0 0 0

c)

Figure 2.1: a) Monochromatic image of the number ‘5’ represented as grayscale. c)
2D tensor containing the intensity values of the pixels. b) image overlain
with the tensor.

However, the images of Senecio jacobaea used in this project are in RGB colour
space. That means each image can be represented as a 3D tensor with a depth of 3
because the image consists of 3 colour channels for red, green and blue, respectively.
The values in each channel represent the intensity of the colour of the channel for
each pixel. The intensity values can be any integer in the range of [0, 255].

a) b) c) d)

Figure 2.2: a) Image of Senecio jacobaea. b) red, c) green, d) blue colour channel of
the same image.

Figure 2.2a shows an image of a specimen of Senecio jacobaea; b, c, and d show
the red, green, and blue colour channels of the image, respectively. The example
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shows how different channels can highlight different features even in the input image
itself. This becomes especially evident in figure 2.2d where the specimen is quite
contrasting to the background vegetation which indicates that Senecio jacobaea has
a more pronounced blueish tint than most other vegetation.

2.2 Discrete Convolutions
A CNN is based on convolutional layers which utilize convolutions to extract features
from input feature maps to produce new output feature maps of higher complexity.
A convolution is a mathematical operation which can be used for processing and
manipulating functions or signals. For continuous signals, a convolution is given by
an integral; for discrete signals, it is given by a discrete sum. A grayscale image can
be considered a discrete version of a continuous 2D function g[x, y] where x and y

are the discrete indices of the pixels in the image and g[x, y] is the intensity of the
pixels. The indices are ordered from top to bottom and from left to right of the
image. Outside of the defined area of the image, the values are considered to be 0.
A convolution of such an image can be represented by the sum

f [x, y] = g[x, y] ∗ h[x, y] =
∞∑

k=−∞

∞∑
l=−∞

g[k, l] · h[x − k, y − l] (2.1)

The original image (input tensor) g[x, y] is convolved (∗) with another, usually
much smaller, image h[x, y], called a kernel, to yield the manipulated image (output
tensor) f [x, y]. The pixel intensity values in the kernel are weights which are learn-
able parameters of a CNN. That means the values are adjusted during training to
increase the accuracy of the model.

During the convolution, the kernel is mirrored about both axes and shifted to
the x and y coordinates. At every point [x, y] each element of the input image is
multiplied with the corresponding element of the kernel and the results are summed
up which yields the new intensity value for the output image f at the pixel [x, y].
This is done for all possible [x, y] coordinates, i.e. every point where the kernel
overlaps a defined area of the input image.

To conclude, a convolution can be thought of as mirroring the Kernel and sliding
it across the input feature map from left to right, from top to bottom. At each
position an elementwise multiplication between the kernel weights and the elements
of the input feature map, overlapped by the kernel, is performed and the results
are summed up to obtain a new value for that position [Dumoulin and Visin, 2018].
Figure 2.3 shows an example of how convolving an image with a kernel can extract
features. Here, a horizontal Sobel operator, which is used for detecting horizontal
edges, is used for convolution. In the context of CNNs, a) would be the input tensor,
b) would be the filter, and c) would be the output tensor with one feature map.

Kernel sizes larger than 1×1 decrease the output feature map size, since it reduces
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a)

-1 0 1

-2 0 2

-1 0 1

b) c)

Figure 2.3: a) 512 × 384 grayscale image of Senecio jacobaea and surrounding veget-
ation. b) 3 × 3 horizontal Sobel operator kernel. c) 510 × 382 output
image from convolving the input image from a) with the kernel from b).

the number of possible positions for the kernel without overlapping undefined areas
of the input feature map (See figure 2.3). The input feature map can therefore be
padded to conserve the original size. Increasing the step size or stride of the kernel
(i.e. skipping positions) further reduces the output feature map size. According to
[Dumoulin and Visin, 2018], the output feature map size can be calculated with

o =
⌊

i + 2p − k

s

⌋
+ 1 (2.2)

where o is the output feature map size, i is the input feature map size, p is the
padding, k is the kernel size and s is the stride.

In a CNN, the input tensor usually consists of multiple channels (feature maps),
i.e. is 3-dimensional. For 2D convolutions, the kernel or filter has as many channels
(with distinct weights in each channel) as the input tensor. Each channel of the
input tensor is convolved with the corresponding channel of the filter. Finally, all
resulting channels are summed up element-wise to yield a single new feature map.
To obtain n feature maps for the output tensor, the input tensor has to be convolved
with n filters.

2.3 Structure of a CNN
As mentioned before, a CNN consists of several layers. The first layer is the input
layer which takes in an image of a fixed size as its input. The last layer is the
output layer which returns a certain output, e.g. a class label, depending on the
type of network. The layers in between are called hidden layers and consist of
different building blocks like convolutional layers, pooling layers, or fully connected
layers [Yamashita et al., 2018]. In a feed-forward neural network, the output of the
previous layer is used as input in the next layer. So, the input is passed from one
layer to the next in forward direction through the network. The general structure of
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a simple CNN can be seen in figure 2.4 which shows the architecture of the famous
LeNet-5 proposed by LeCun et al. [1998], which was designed to distinguish hand-
written digits in monochromatic images of size 32×32 pixels. It is a decent example
for understanding the structure of CNNs as it is comprehensible due to its small
size, yet still contains the most important building blocks that modern day CNNs
are composed of.
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Figure 2.4: LeNet-5 architecture. Own illustration, based on LeCun et al. [1998].
Conv1 and Conv2 are convolutional layers. Pool1 and Pool2 are max
pooling layers. FC1 and FC2 are fully connected layers. Notations:
6@28 × 28 refers to 6 feature maps of size 28 × 28 pixels

A convolutional layer (Conv1 and Conv2 in figure 2.4) is a combination of linear
and nonlinear operations. The linear operation is a convolution operation as de-
scribed in the previous subsection. It is done by applying n different filters to the
layer input to produce n different feature maps as the layer output. The weights in
the filters are the learnable parameters of the network. As convolutions are linear
operations, it is important to introduce a non-linearity by applying another non-
linear operation since otherwise, the network could only detect linear relationships
which would defeat the purpose of the hidden layers. Therefore, a so-called activ-
ation function is applied to each element of the output feature maps before they
are passed as input to the next layer. There are different activation functions such
as the hyperbolic tangent, the sigmoid, or the Rectified Linear Unit (ReLU). SSD-
MobileNet-v1 which is the CNN used in this project utilizes the ReLU function
[Howard et al., 2017] which is given by

f(x) = max(0, x) (2.3)
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In LeNet-5 (see figure 2.4), the kernel sizes in both convolutional layers are 5 × 5
(width × height), therefore, the output feature maps are reduced by 4 pixels in
height and width as explained by equation 2.2.

Another important building block is the pooling layer (Pool1 and Pool2 in figure
2.4). In a CNN, the height and width of the feature maps typically get smaller and
smaller with each subsequent layer. This is desired since larger feature maps are
computationally more expensive and if the model is to be deployed in an embedded
system with limited computing power, computational efficiency is important for the
performance of the application. Therefore, feature maps are often downsampled with
pooling layers to further reduce the size of the feature maps. Like in a convolutional
layer, a kernel is slid across the input feature map. The kernel is usually of size
2 × 2 and a stride of 2 is used such that it skips every second position in the feature
map. The difference is, that the kernel does not contain learnable parameters and
no elementwise multiplication is performed. In max pooling, the value returned
for each position is the maximum value of the input feature map within the area
overlapped by the kernel; the other values of the input are omitted. There are
also other pooling methods such as min pooling which takes the minimum value, or
average pooling which calculates the average of the values. A pooling layer with a
kernel of size 2 × 2 and stride of 2 can thus reduce the height and width of the input
feature map by 50% and the area by 75%, which makes calculations in subsequent
layers faster [Yamashita et al., 2018]. How a pooling layer reduces the feature map
size by a factor of 2 can also be seen in figure 2.4.

In CNNs for classification tasks such as MobileNet, the last layers are typically
fully connected layers (FC1 and FC2 in figure 2.4), also referred to as dense layers.
That means the output of the last convolutional layer is flattened to a 1-dimensional
vector and used as input for one or more dense layers. In a dense layer each input is
connected to each output and a learnable weight is associated with each connection.
A dense layer thus calculates linear combinations of the previous layers outputs.
Therefore, like with convolutional layers, a nonlinear activation function like ReLU
is applied to each output before passing it to the next layer. The final output is for
example a vector with the probabilities of each class.

2.4 Training and Using a CNN
When a CNN is used for inference, the process is called forward propagation because
the input data is propagated through the network in forward direction to yield some
predicted output.

As mentioned before, training a model refers to optimizing its parameters (e.g.
kernels, weights) to minimize the error that the model makes. The process is done
by a backpropagation algorithm which utilizes a loss function and an optimizer like
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Stochastic Gradient Descent (SGD). It is called backpropagation because during
the optimization process, the propagation occurs in the backward direction starting
from the output layer and ending in the first hidden layer.

The loss function L, also called cost function, is a measure of the error that
the model makes. As an input it uses the output predicted by the model and the
ground truth labels of the training dataset. A high loss means that model output
and ground truth labels do not match well and that the model accuracy is low.
Therefore, during training, the goal is to reduce the loss of the model. The type of
loss function depends on the type of output that the model produces.

According to Yamashita et al. [2018], gradient descent is a commonly used op-
timization algorithm. The loss function is a function of all learnable parameters
of the model. The gradient of the loss function points in the direction of steepest
rate of increase of the loss function. It is a vector containing the partial derivatives
of the loss function with respect to each parameter. As the goal is to reduce the
loss, each parameter has to be tweaked in the negative direction of the gradient.
Thus, the sign of each partial derivative gives the opposite direction of how to tweak
the parameter and its magnitude is a measure by how much it has to be tweaked.
Therefore, gradient descent refers to finding a (local) minimum of the loss function
by updating its parameters as to decrease the loss as fast as possible. To not over-
shoot such a minimum of the loss function, the learning steps are multiplied with
a small factor (e.g. 0.01) called learning rate. A single update of a parameter can
thus be expressed with

w := w − α · ∂L

∂w
(2.4)

where w represents each learnable parameter, α is the learning rate, and L is
the loss function. In gradient descent, the gradient of the loss function would be
calculated for each image in the training dataset. Afterwards, the values of the
partial derivatives for each parameter would be averaged, then multiplied with the
learning rate and subtracted from the corresponding parameter to yield its new
value. However, it would be extremely time consuming to calculate the output for
each image of the training dataset for every optimization step. Therefore, a more
commonly used optimizer is the SGD in which the training dataset is split into
several batches. Instead of using the whole dataset for an optimization step, the
model is updated with each batch making training much more time efficient.

Model parameters which are not learnable and which have to be set manually
before training, such as activation functions, loss functions, optimizers, batch sizes,
or learning rates are referred to as hyperparameters of the model [Yamashita et al.,
2018].
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2.5 SSD-MobileNet-v1
The CNN used for this project is the SSD-MobileNet-v1 which is an object detection
model provided by NVIDIA on GitHub [Franklin et al., 2016]. The network combines
the two separate models MobileNet [Howard et al., 2017] and Single Shot MultiBox
Detector (SSD) [Liu et al., 2016] to a single new model.

MobileNet is a CNN for image classification which uses depthwise separable con-
volutional layers instead of standard convolutional layers. Depthwise separable con-
volution splits the convolution into two steps, a depthwise convolution which is
used for extracting features and a pointwise convolution which calculates a linear
combination to obtain the final feature map as output. This greatly reduces the
number of calculations necessary as well as the number of trainable network para-
meters [Howard et al., 2017] which makes it very well suited for systems with limited
computing power such as the NVIDIA Jetson Xavier NX.

The fully connected layers of MobileNet used for classification are cut off and the
convolutional base of the network is used as input for SSD. So, MobileNet is used
in the beginning for extracting features and SSD is used afterwards for extracting
higher order features and for the object detection itself.

In general, there are two different kinds of object detection models: multi-stage
and single-stage detectors [Sumit et al., 2020]. Multi-stage models split the image
into subsections and perform a classification on these subsections in different scales
to find objects in the image. That means, for a single object detection, the network
has to perform many evaluations. In contrast to that, single-stage object detection
models only need a single evaluation of the model as they directly map pixel values
to bounding boxes and class probabilities. This lets them outperform multi-stage
methods like Region based Convolutional Neural Network (R-CNN) [Redmon et al.,
2015]. SSD is such a single-stage object detection model. Therefore, the combination
of the lightweight MobileNet with the single-stage detector SSD was chosen to be
used in this project since the computational efficiency is important when working
with embedded computers like the NVIDIA Jetson Xavier NX which is able to run
this model in real-time.
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3 Materials and Methods

3.1 Senecio jacobaea Dataset
To train SSD-MobileNet-v1 to detect Senecio jacobaea, a labelled dataset is neces-
sary. The dataset should be as large as possible for the model to learn the features
of Senecio jacobaea and to prevent the model from being overfit. Overfitting refers
to the model learning irrelevant noise specific to the training dataset by training too
much on the same data or on a dataset that is too small. The model would then
memorize the images from the training dataset and which would decrease its accur-
acy on unseen data. A larger dataset thus helps the model to better generalize the
common features of the different classes and prevent overfitting [Yamashita et al.,
2018].

Besides collecting a larger dataset, there are also other possibilities to prevent
overfitting. One option is to artificially increase the dataset size using data aug-
mentation. Data augmentation refers to modifying the images with random trans-
formations such as translation, rotation or mirroring and adding those modified
images to the dataset.

Another possibility is to use transfer learning. When using transfer learning, the
weights in the model are not initialized with random values (i.e. not trained from
scratch) but instead pretrained model parameters are used. The assumption is that
generic features learned from another large dataset are also valid for apparently
disparate smaller datasets and can thus be shared [Yamashita et al., 2018]. Since
the size of the dataset which could be obtained in this project is limited, a version of
SSD-MobileNet-v1 pretrained on the MS COCO dataset containing 330000 images
of 91 object classes [Lin et al., 2015] was used. For the format of the Senecio jacobaea
dataset the PASCAL VOC [Everingham et al., 2010] dataset format was chosen.

3.1.1 Collecting Data

The dataset should be representative of what the model would see during applica-
tion afterwards. That means the images should be taken at different times of day,
under different weather and lighting conditions. The locations and the surrounding
vegetation should be diverse and the specimens of Senecio jacobaea should be in
different growth phases. If these conditions are met and the dataset is as large as
possible, it helps the model to generalize the features of the plants better and make
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it more robust during inference later on.
Since the idea is to use the model on an NVIDIA Jetson Nano or NVIDIA Jetson

Xavier NX mounted onto a drone to detect Senecio jacobaea from a height of about
1 to 5 meters, the images should meet the same conditions. Therefore, each image
was taken at a height of approximately 1 meter above ground referring to the center
of the image. All images were taken with an Acaso Brave 4 action camera which
was used as there were already images of Senecio jacobaea available, made with the
same camera which could later on be combined to enlarge the dataset. Furthermore,
all images were taken with the same camera settings to keep the dataset consistent.
The details can be found in table 3.1.

Table 3.1: Camera settings used for creating the Senecio jacobaea dataset.
Parameter Setting Selected
Camera Model Akaso Brave 4 Action Cam
Image Type JPEG
Resolution 5120 × 3830
Aspect Ratio 4:3
Exposure Time 1/849 second
Aperture Value 1.60 EV (f/1.7)
ISO Speed Rating 50
Flash Fired flash did not fire
Metering Mode Average
Exposure Program normal program
Focal Length 2.7 mm

The images were taken in the period of the 15th of May 2021 to the 1st of June
2021. To identify the different sub-datasets, they were given unique identifiers con-
taining information on location, date, time of day and camera model. For example
the ID kam_210515_n_acb4 refers to the images taken in Kamp-Lintfort on the 15th
of May 2021 at noon with the Akaso Brave 4 action cam. The images from the sub-
datasets were additionally given unique four digit numbers separated from the ID
by an underscore. For the project, seven sub-datasets of varying sizes were created
at different locations, dates and time of day. The metadata for these sub-datasets
can be found in table 3.2.

After collecting the images, they were renamed as mentioned before and resized
to 1024 × 768 pixels, keeping the 4:3 aspect ratio, using Open Source Computer
Vision Library (OpenCV) [Bradski, 2000] in Python. The Python scripts used in
this project can be retrieved directly from the GitLab repository of this project
[Zender, 2021]. The resizing was done to make the handling of the data easier and
faster. Since any input data is resized to 300 × 300 pixels [Franklin et al., 2016]
before it is used in the network, resizing the images does not lower the resolution for
the input data of the network and thus does not negatively affect its performance.
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Table 3.2: Metadata of the different sub-datasets. ‘Imgs’ refers to the number of
images and ‘Insts’ refers to the number of class instances in those images
(i.e. the number of Senecio jacobaea specimens.)

ID / Date / Time Location Type Weather Imgs Insts
kam_210515_n_acb4
15.05.21
12:00-14:30

Kamp-Lintfort:
Stephanswäldchen,
LaGa entrance

park mostly
cloudy,
rainy

144 201

kle_210516_n_acb4
16.05.21
11:30-14:30

Kleve:
Forstgarten,
Joseph-Beuys Allee

park cloudy,
later
sunny

469 1242

moe_210518_n_acb4
18.05.21
11:30-13:30

Moers: Schlosspark,
Grafschafter
Kampfbahn

park,
demolition
area

mostly
sunny,
cloudy

85 209

moe_210527_a_acb4
27.05.21
16:30-17:00

Moers:
Grafschafter
Kampfbahn

demolition
area

cloudy,
rainy

112 381

kam_210529_a_acb4
29.05.21
14:00-15:00

Kamp-Lintfort:
Stephanswäldchen,
LaGa entrance

park sunny 90 151

mil_210529_e_acb4
29.05.21
17:00-18:30

Rheinberg
Millingen:
Heidestraße 15

meadow,
pasture

sunny 260 517

leu_210601_n_acb4
01.06.21
12:00-15:30

Leucht: Strohweg,
Stappweg, Bierweg

forest,
fields

sunny 968 3022

3.1.2 Labelling the Data

The output of the network is a fixed number of predictions where each prediction
has a class, a confidence value and a bounding box. The confidence value is the
probability that the detection is valid. Usually, a threshold is set which cuts off
all predictions which have a confidence that is too low. The bounding box encloses
the object predicted by the model and it is given by the bounding box coordinates.
Specifically, the model will return the x and y coordinates of the top left corner and
the bottom right corner of the bounding box.

To train the model, each sample from the dataset needs a ground truth label which
has to contain the class and bounding box coordinates of every object that the model
should find in that image. The labelling was done using the free and open source
Computer Vision Annotation Tool (CVAT) developed by Intel [Sekachev et al.,
2020]. CVAT can be used online to draw the bounding boxes directly on the image
and export them in different formats, however, it should be noted that the limit
for uploaded data is 500Mb. Therefore, CVAT was installed locally and for each
sub-dataset a separate task was created. The finished labels for each sub-dataset
were exported in PASCAL VOC dataset format in which each image has its own
XML file containing the label. Listing 3.1 shows an example for such a label file
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for image 436 of the Leucht sub-dataset. The file contains the file-name (l. 3) and
dimensions (l. 10-11) of the image it belongs to. Each bounding box is defined in
an object tag where xmin, ymin, xmax, and ymax (l. 19-22) are the coordinates of
the top left and bottom right corner of the bounding box, respectively. The class
name is given in the name tag (l. 16).

Listing 3.1: XML ground truth label for image 436 of the leu_210601_n_acb4 sub-
dataset.

1 <annotation >
2 <folder >leu </ folder >
3 <filename > leu_210601_n_acb4_0436 .JPG </ filename >
4 <source >
5 <database >Unknown </ database >
6 <annotation >Unknown </ annotation >
7 <image >Unknown </ image >
8 </source >
9 <size >

10 <width >1024 </ width >
11 <height >768 </ height >
12 <depth ></depth >
13 </size >
14 <segmented >0</ segmented >
15 <object >
16 <name >Senecio </name >
17 <occluded >0</ occluded >
18 <bndbox >
19 <xmin >308.88 </ xmin >
20 <ymin >230.42 </ ymin >
21 <xmax >738.71 </ xmax >
22 <ymax >739.41 </ ymax >
23 </bndbox >
24 </object >
25 </annotation >

Figure 3.1 shows the image with the bounding box encoded in the label file. In
total, for the 7 sub-datasets listed in table 3.2, 5723 instances of the Senecio class
were labelled.

3.1.3 Creating a Dataset in PASCAL VOC Format

After creating the labels for all sub-datasets shown in table 3.2 using CVAT and
exporting them, the collected data and labels have to be reorganized into a single
dataset that can be used for training. Furthermore, the dataset has to be split into
a training, validation, and test dataset [Yamashita et al., 2018].

3.1.3.1 Training, Validation and Test Set

The training dataset is used to optimize the model during training through back-
propagation. The features of the training data are the features that the model
learns.
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Figure 3.1: Image 436 of the leu_210601_n_acb4 sub-dataset. The corresponding
bounding box enclosing the Senecio jacobaea specimen, encoded by the
XML file shown in listing 3.1, is displayed in cyan.

The validation dataset is used during the training process to monitor the progress
and performance of the model. During training the model iterates over the training
data multiple times to optimize the model parameters. One iteration over the whole
training dataset is referred to as an epoch. After completing an epoch, the model
is evaluated on the validation dataset by performing forward propagation on each
validation sample and calculating the average loss for the whole validation dataset.
The loss can then be used to track the training progress and for deciding if the
model should be trained further or not.

The test dataset is not needed until the training is finished. It is then used
to evaluate the most promising model checkpoints (i.e. the ones with the lowest
validation loss) by using it on data it has never seen before. The model which
performs best on the test dataset is then usually used in practice later on.

There are different common ratios of how to split the dataset into training, valida-
tion and test dataset. In this project, 80% were used for training, 10% for validation,
and the remaining 10% for testing, which in comparison to other ratios yielded the
best results for datasets of similar size [Prashanth et al., 2020].

3.1.3.2 The PASCAL VOC Dataset Format

To enable the model to process the data, it has to be organized into to a standardized
file and directory structure which is called the PASCAL VOC dataset format. Figure
3.2 shows the directory tree that has to be used.

Annotations must contain the labels as XML files while JPEGImages contains
the corresponding images. default.txt and train.txt are identical and define
the training dataset; i.e. the name of each sample from the training dataset written
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into a new line. Analogous to that, test.txt and val.txt define which samples
belong to the test and validation dataset, respectively. Lastly, labels.txt must
contain the names of all the classes from the dataset as they are written in the XML
labels.

<dataset name>
Annotations
ImageSets

Main
default.txt
test.txt
train.txt
val.txt

JPEGImages
labels.txt

Figure 3.2: Directory structure for a dataset in PASCAL VOC dataset format.

3.1.3.3 Automatizing the Process

Since converting the dataset manually is a tedious and error-prone task, it was
automatized using a custom Python class DataSetCreator which is available on
the project GitLab page [Zender, 2021]. Listing 3.2 shows how to use it inside the
cloned repository.

After importing the class from the Python module a DataSetCreator object can
be instantiated by passing in a name for the dataset and a path where it should
be saved (l. 13). The loadSamples() method can be used to copy the images and
their labels into the dataset folder by passing in a list of sub-dataset names or tuples
containing the paths to images and their labels (l. 14). createLabeLtxt() is used
to create the labels.txt file by passing in a list of class names which are used in the
dataset (l. 15). These have to be spelled exactly as in the XML labels. Here, only
a single class Senecio is used. Finally, with split() the dataset can be split up
into training, validation, and test dataset by passing in the proportions that each of
them have; i.e. 80% training, 10% validation, 10% testing (l. 16). The method will
populate the four text files defining which image belongs to which set as described in
section 3.1.3.2. If shuffle is set to True, then the samples will be shuffled randomly
before being distributed to the three subsets which should be done to ensure each of
them contains samples from each sub-dataset. This is important, because training,
validation and test datasets must all be representative for the dataset as a whole. For
shuffling, Pythons random module was used which produces pseudo-random numbers
for shuffling the images. Pseudo-random number generation refers to producing
numbers which appear as if random, but are reproducible since they are calculated
by an algorithm. The algorithm needs a starting value called a seed for which, by
default, the system time is used. By choosing a constant value for the seed, the
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results can be reproduced if the seed is known. This is important later on, for
creating new, modified datasets which should have the same training, validation,
and test sets to be able to compare the results.

Listing 3.2: Python script for combining different sub-datasets into a single dataset
in PASCAL VOC format which can be used for training a model.

1 from custom_scripts . DataSetCreator import DataSetCreator
2

3 # available sub - datasets
4 dname_list = [’kam_210515_n_acb4 ’,
5 ’kle_210516_n_acb4 ’,
6 ’moe_210518_n_acb4 ’,
7 ’moe_210527_a_acb4 ’,
8 ’kam_210529_a_acb4 ’,
9 ’mil_210529_e_acb4 ’,

10 ’leu_210601_n_acb4 ’]
11

12 # create new dataset
13 dataset = DataSetCreator (’Senecio_dataset ’, path=’data/ datasets ’)
14 dataset . loadSamples ( dname_list )
15 dataset . createLabeltxt ([’Senecio ’])
16 dataset .split(train =80, val =10, test =10, shuffle =True , seed =42)

3.1.4 Dataset Visualization

Since it is difficult to understand the properties of a dataset just by observing the
raw data, a Python class was written to visualize the dataset by reading in the
XML label files. The goal was to understand how the specimens of Senecio jacobaea
are spatially distributed in the images which could be an important factor since
specimens located towards the edges of the images are more distorted compared to
specimens located in the center. This was done by creating a grid to lay on top of the
images using a NumPy array [Harris et al., 2020]. Then the center of each bounding
box was calculated and the value of the grid cell containing the center point was
incremented by one. In other words, each element in the array is a counter which is
incremented by one for each bounding box centred at that element. The resulting
array is visualized in figure 3.3 as a heatmap which shows that the vast majority
of plants are located in the center of the images. The other specimens are evenly
distributed over the remaining area.

Another goal was to visualize the distribution of the bounding box sizes. This is
important information when evaluating the performance of the finished model since
small specimens can generally be expected to be harder to detect. Figure 3.4 shows
a histogram of the absolute frequencies of Senecio jacobaea for different bounding
box size bins. In the figure, the right tail of the distribution is cut off since there
were only very few outliers in those size ranges (30 outliers of up to 313000 pixel2).
The histogram reveals that the distribution is right-skewed and as such smaller
specimens are much more common than large specimen.
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Figure 3.3: Heatmap showing the spatial distribution of all 5723 specimen of Senecio
jacobaea in the 2128 images of the dataset. x and y refer to the zero-
based pixel coordinates of the images of size 1024 × 768 pixels.

Listing 3.3 shows how to use the Python script [Zender, 2021] to visualize the
dataset. After importing the class (l. 1) and defining the path to the labels (l.
3), a DataSetReader instance is created (l. 4). The XML files are loaded to a
Python dictionary (l. 5) and the bounding box statistics are printed (l. 6). Then
the counter-array of size 256 × 192 is created (l. 8) and plotted as a heatmap (l. 9).
Lastly, the histogram of the bounding box size distribution is plotted (l. 11). The
histogram bins and their values can afterwards be accessed by the bins and counts
variables.

Listing 3.3: Python script for visualising the dataset.
1 from custom_scripts . DataSetReader import DataSetReader
2

3 label_path = ’data/ datasets / Senecio_dataset / Annotations ’
4 dataset = DataSetReader ( label_path )
5 dataset . loadLabels ()
6 dataset . printStats (2)
7 # Heatmap
8 dataset . distrMatrix (dst =[ int(val /4) for val in (1024 ,768) ])
9 dataset . plotHeatMap ()

10 # Histogram
11 fig ,ax ,counts ,bins ,bars = dataset . plotBBoxHist ()
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Figure 3.4: Histogram of the distribution of bounding box sizes in the dataset. The
right tail is cut off since there are only very few outliers larger than
150000 pixel2.

3.2 Training Toolchain
The training and inference of the model was done using an NIVIDA Jetson Xavier
NX (NJX) Developer Kit which includes an NJX module attached to a reference
carrier board which is designed for developing and testing software, specifically in
the field of DL and computer vision. NVIDIA provides the JetPack Software De-
velopment Kit (SDK) which can be flashed onto a microSD card and used on the
NJX. The SDK provides a Linux operating system and several software packages
and libraries for DL and computer vision.

3.2.1 Preparing the Training

After flashing the SD card image, the jetson-inference GitHub repository was cloned
[Franklin et al., 2016]. The repository includes a Docker image that can be used
to build a Docker container which contains built-in models and necessary Python
modules like PyTorch for running the scripts for training and inference of these
models. The container can be navigated using a Linux terminal. Figure 3.5 shows
the part of the directory tree which is relevant to this project.

The dataset created in section 3.1.3.3 was copied to the data folder and a new
directory in the models folder was created for saving the checkpoints of the model
during training.

Furthermore, the GitLab repository of this project [Zender, 2021] must be cloned
to reproduce the results. The folder senecio_jacobaea/mount contains all neces-
sary Python scripts for training and inference of SSD-MobileNet-v1.

Afterwards, the container was started and the mount folder was mounted into
the container. Mounted folders are available inside the container after starting it
and changes made inside the folder are persistent even when the container is shut
down later on. The container can be started with the folder mounted into it as
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jetson-inference
docker

run.sh
python

training
detection

ssd
data

<dataset folder>
models

<Senecio models folder>
mount

logging_info
model_evaluation
create_test_set.py
predict_ssd.py
train_ssd.py

onnx_export.py
Figure 3.5: Part of the jetson-inference repository which is relevant for the pro-

ject. Irrelevant folders and files are not shown here. Names enclosed
with <> have to be replaced with the actual names used.

shown in listing 3.4 where <host path> must be replaced with the path to the
senecio_jacobaea/mount folder.

Listing 3.4: Command for running the Docker container with the folder mounted.
1 /jetson-inference$ docker/run .sh --volume <host path >:

python/training/detection/ssd/mount

3.2.2 Training the Model

The NVIDIA repository includes a script for training SSD-MobileNet-v1, pretrained
on the MS COCO dataset, using PyTorch. However, the information on the train-
ing progress, such as the validation loss after each epoch, is only printed to the
terminal. Therefore, the training script was modified using Pythons logging mod-
ule to automatically create a log file in the logging_info folder in which all logging
information is stored. This log file can later be used to visualize and evaluate the
training progress of the model. The modified script is included in the mounted
folder. The training was then started as shown in listing 3.5.

Listing 3.5: Command for training SSD-MobileNet-v1 on a custom dataset in
PASCAL VOC format.

1 /mount$ python3 train_ssd .py --dataset-type =voc --data =data/ <
dataset folder > --model-dir =models/ < Senecio models folder >
--batch-size =2 --workers =1 --epochs =100

The paths to the dataset and the model output folder were specified according
to figure 3.5 and the dataset-type was set to the PASCAL VOC dataset format.
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Furthermore, the batch size was set to 2 which means that the 1702 images from
the training dataset were split up into 851 batches containing 2 images each. The
model performs backpropagation on both images and after completing a batch, the
model parameters are updated according to equation 2.4. So, for each epoch, there
are 851 optimization steps. The learning rate was left to its default value of 0.01.
The number of epochs was set to 100 which needed 4:45 hours to complete.

3.2.3 Evaluating Logging Files

After the training script finishes, the log file of the training can be used to visualize
the training process which helps to identify the model checkpoints which performed
best on the validation dataset. To automatize the task, another Python class was
used which can be found in the GitLab repository of the project. Listing 3.6 shows
how to use it for analysing the log file.

Listing 3.6: Python script for reading the log file containing the logging information
of the training process.

1 from custom_scripts . LogReader import LogReader
2

3 log = LogReader (path=’training_logs / logging_info_0016 .log ’)
4 log. readLog ()
5 log. linePlot ()
6 log.sort ().head (3)

After importing the class (l. 1), a LogReader object can be instantiated by passing
in the path to the log file to analyse (l. 3). The readLog() method (l. 4) reads in
the log file and creates a DataFrame out of it using the Pandas library [pandas de-
velopment team, 2020; Wes McKinney, 2010]. linePlot() (l. 5) creates a line plot
showing the validation loss throughout the training process. sort() (l. 6) returns
the DataFrame sorted for the total validation loss in ascending order; i.e. the best
performing model at the top.

Figure 3.6 shows a line plot of the validation loss during the training process. After
completing an epoch, the model is evaluated on the validation dataset consisting of
214 images, then the average loss is calculated (validation loss), and a checkpoint
of the model is stored to the model directory. In this case, the loss is calculated
with two different loss functions, one for classification and one for regression. In
classification tasks the output is discrete and the input has to be classified into one
of those discrete categories whereas in regression tasks, the output is continuous
[Muthukumar et al., 2020]. The classification loss refers to the error that the model
makes concerning the assignment of the classes; i.e. does it assign the correct class
to a detected object. In this case it only distinguishes between the Senecio class
and a background class that it assigns to everything else. The regression loss refers
to the error that the model makes concerning the bounding box coordinates. The
total validation loss is the sum of classification and regression loss.

21



0 20 40 60 80
Epoch

0

1

2

3

4

5

Va
lid

at
io

n
Lo

ss

Total
Classification
Regression

Figure 3.6: Line plot showing the validation loss (classification, regression, total) of
the model during the training process.

The graph shows that the classification loss decreases, albeit slowly, over time.
The regression loss initially decreases rapidly and then starts to approach a constant
value. In the end, the total validation loss starts to stagnate around 3.13 which shows
that continuing the training is unlikely to further improve the model. The graph
further allows to monitor any under- or overfitting of the model. During the first
epochs, the model is still underfit since the validation loss continues to decrease. If,
at some point, the validation loss would start to increase again, it would signal that
the model is overfit, which is not the case here. The three most promising model
checkpoints (95, 98 & 93) are the ones with the lowest total validation loss as shown
in table 3.3.

Table 3.3: Best performing model checkpoints according to the total validation loss.
Epoch Total Validation Loss Classification Loss Regression Loss
95 3.1342 2.0239 1.1103
98 3.1356 2.0274 1.1082
93 3.1359 2.0173 1.1187

3.2.4 Model Export

After completing an epoch and calculating the validation error, the model checkpoint
is saved as a PyTorch file (.pth) to the model directory. Under the jetson.inference
module, NVIDIA provides the detectNet class for inference of object detection mod-
els. However, the model needs to be in Open Neural Network Exchange (ONNX)
format to be used with detectNet.
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The best model checkpoint (epoch 95) and the labels.txt file were therefore copied
to a new sub-folder. Note that the labels.txt file from the model directory must be
used (not from the dataset), since PyTorch adds a BACKGROUND class to the beginning
of the file; if this class is omitted, all predictions with the model will be erroneous.
The conversion from PyTorch to ONNX format was done using the Python script
onnx_export.py, provided by NVIDIA [Franklin et al., 2016]. How to use it from
the terminal is shown in listing 3.7.

Listing 3.7: Command for converting a model from .pth to .onnx format.
1 /ssd$ python3 onnx_export .py --model-dir =<model directory >

3.3 Training on Modified Datasets
This first model was trained on the original dataset. Before evaluating it, two more
datasets were created by modifying the original dataset and the model was trained
on each of them individually. The goal was to gain more insight later on into what
factors influence the performance of the model. Specifically to answer the questions
how the size of the Senecio jacobaea specimens influences the model performance
and secondly if a larger dataset improves the accuracy of the model.

3.3.1 Dataset 2: Influence of Object Size

To find out how the size of the objects influences the results, the Senecio class from
dataset 1 was split into three different size classes, a small Senecio_s, a medium-
sized Senecio_m, and a large Senecio_l class. To which of these three classes a
specimen belongs was determined by calculating its bounding box size and setting
certain size thresholds for each class (see figure 3.7).
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Figure 3.7: Histogram of the distribution of bounding box sizes in the dataset split
into three classes of different bounding box size intervals.

The underlying idea was that, since all images were taken at the same height of 1
meter above ground and are thus scaled consistently, the bounding box size in the
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image directly correlates to the size of the plant in the real world. A small bounding
box would thus correspond to a small plant which, generally, should correspond
to an early growth stage of Senecio jacobaea. As a specimen of Senecio jacobaea
grows, the number, size, and shape of its leaves change and consequently also the
nature of the features, that the model has to identify, changes. Therefore, splitting
the Senecio class into three subclasses, which share more uniform features, could
increase the accuracy of the model since it would be able to specialize for different
growth stages. Furthermore, it would reveal how the size of a specimen affects the
probability of the model correctly identifying it.

The boundaries for the size classes were set at 20000 and 40000 pixel2 as shown
in figure 3.7. The advantage of using fixed bounding box size thresholds for the
classes is that the labels can be modified automatically instead of doing it manually
in CVAT. This was done using another Python script which is shown in listing
3.8. After importing the class (l. 1), a list of available sub-datasets (same as the
first dataset) was defined (l. 3-9). A ClassDivider [Zender, 2021] object was then
instantiated and passed the list of sub-datasets to use and a path where the modified
labels should be stored (l. 11,12). Afterwards, the original labels were copied to
that folder (l. 14) and the class was divided into the three size classes using the
defined boundaries (l. 15,16). The script then reads each XML file and determines
the size of each bounding box. Then it checks to which interval the bounding box
belongs, changes the class name accordingly and saves the XML file. The intervals
for the three size classes are

• Senecio_s: [0, 20000] pixel2

• Senecio_m: (20000, 40000] pixel2

• Senecio_l: (40000, ∞) pixel2

Listing 3.8: Python script for dividing the Senecio class into multiple subclasses
based on bounding box size.

1 from custom_scripts . ClassDivider import ClassDivider
2

3 dname_list = [’kam_210515_n_acb4 ’,
4 ’kle_210516_n_acb4 ’,
5 ’moe_210518_n_acb4 ’,
6 ’moe_210527_a_acb4 ’,
7 ’kam_210529_a_acb4 ’,
8 ’mil_210529_e_acb4 ’,
9 ’leu_210601_n_acb4 ’]

10

11 dataset = ClassDivider ( dataset_ids =dname_list ,
12 mod_dir =’senecio_v002 ’)
13

14 dataset . copyLabels ()
15 dataset . divide ( class_dividers =[20000 , 40000] ,
16 class_labels =[’Senecio_s ’, ’Senecio_m ’, ’Senecio_l ’])
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The script also returns the number of class instances for each class which were
3535 of Senecio_s, 1281 of Senecio_m, and 907 of Senecio_l. These modified
labels were then used to create a second dataset which was done as described in
section 3.1.3.3. The only difference was, that instead of passing in the IDs of the
sub-datasets directly, tuples with the paths to images and the modified labels were
used and the labels.txt file had to be adjusted. Furthermore, the same random
seed was used as in the creation of the first dataset. Thus, the training, validation,
and test sets of the new dataset contained the same images as in the first dataset
such that the results later on can be compared.

The new dataset was then used to train the model as described in the training
toolchain (section 3.2) and the log file was evaluated as can be seen in figure 3.8.
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Figure 3.8: Line plot showing the validation loss (classification, regression, total) of
the model during the training process on the second dataset.

The plot is similar to the one of the first model with the exception of the two
extraordinarily pronounced spikes in the validation error after epoch 1 and 6. The
best performing model checkpoints are shown in table 3.4. The regression loss is
almost identical to the first model but the classification loss is on average 0.636 higher
among the three best models. The model checkpoint of epoch 92 was exported to
ONNX format for further evaluation.

Table 3.4: Best performing model checkpoints according to the total validation loss
for the second training.

Epoch Total Validation Loss Classification Loss Regression Loss
92 3.8227 2.6524 1.1703
96 3.8398 2.6672 1.1726
95 3.8512 2.6563 1.1949
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3.3.2 Dataset 3: Influence of Dataset Size

A third dataset was created to answer the question whether collecting more data to
increase the dataset size would be likely to increase the model accuracy as well. To
test this hypothesis, the first dataset was copied and the training dataset was reduced
by 50%. This was done manually by deleting half of the entries in the train.txt
and default.txt files which define the images used for training. Afterwards, the
training was done as described in the training toolchain (section 3.2).
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Figure 3.9: Line plot showing the validation loss (classification, regression, total) of
the model during the training process on the third dataset.

Figure 3.9 shows the curve of the validation loss during the training process. For
the most part it appears similar to the curve of the first model. The difference is
that the curve does not decrease as stably but the validation loss fluctuates more
from epoch to epoch, especially within the first half of the training. In the second
half, the curve becomes more stable and approaches a constant value which is about
0.4 higher than the loss of the first model.

Table 3.5: Best performing model checkpoints according to the total validation loss
for the third training.

Epoch Total Validation Loss Classification Loss Regression Loss
95 3.5249 2.1347 1.3902
86 3.5259 2.1353 1.3906
98 3.5387 2.1419 1.3969

Table 3.5 shows the three best performing model checkpoints of the third training
session. The classification loss is at a similar level as for the first model but the
regression loss is about 0.28 higher for the third model. For further evaluation, the
checkpoint of epoch 95 was exported to ONNX format.
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3.4 Inference on Test Datasets
After finishing the training and exporting the best checkpoints, the performance of
each model was evaluated. For that purpose, the models have to be applied on the
test dataset [Yamashita et al., 2018]. The test dataset consists of completely new
data that the model has not seen before and is defined by the test.txt file in the
dataset folder (see figure 3.2).

3.4.1 Creating the Test Datasets

For inference with the model and subsequent performance evaluation, the images
and XML labels of the test dataset were extracted from the main dataset using a
Python script which can be applied as shown in listing 3.9.

Listing 3.9: Command for extracting the test dataset from a whole dataset in
PASCAL VOC format.

1 /mount$ python3 create_test_set .py --dataset_path =’<input path >’
--output_folder =’<output path >’

The script reads the test.txt file and extracts only images and labels of the test
dataset into a directory structure as shown in figure 3.10.

<test dataset name>
images
labels
predictions
outputs

Figure 3.10: Directory tree of the test datasets.

images contains the images and labels contains the ground truth labels of the
test dataset. predictions is used for storing the predictions of the model during
inference and outputs is used to store any data on the model performance during
evaluation later on. The script was used on each of the three datasets (original data-
set, dataset with size classes, original dataset with 50% training data) to evaluate
the three corresponding models individually on their own test dataset.

3.4.2 Inference

For the evaluation of the models, the toolbox provided by Padilla et al. [2021]
was used which requires the predictions of the model to be in a certain format.
Specifically, each image has to have its own text file in which each line represents a
prediction of the model of the form

<class name> <confidence> <left> <top> <right> <bottom>
containing the class name, the confidence score and the absolute pixel coordinates

of the top-left and bottom-right corners of the predicted bounding box.
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NVIDIA provides the detectNet class which allows to use object detection models
in ONNX format for inference in custom Python scripts and is included in the
jetson.inference module of the GitHub repository [Franklin et al., 2016]. The
class was used for applying the models on their respective test datasets and output
the results in the correct format as described above. Listing 3.10 shows how to use
the script for inference on the test datasets created in the previous section.

Listing 3.10: Command for applying custom object detection models on test images
and storing the outputs as text files.

1 /mount$ python3 predict_ssd .py --model_path =’<path to ONNX file >’
--labels_path =’<path to labels .txt >’ --image_path =’<path to
test images >’ --predictions_path =’<path to predictions folder >’
--threshold =0.5

Note that the labels.txt containing the class labels must include the BACKGROUND
class or the results will be erroneous. Furthermore, detectNet is implemented with
NVIDIA’s TensorRT which is an SDK that optimizes computational graphs of DL
models to increase the inference performance. Therefore, when first executing the
script, it may take a few minutes for the model optimization process to finish.
Afterwards the optimizations are loaded from cache and the process becomes much
faster.

The threshold argument refers to the confidence score threshold. Every detection
of the model that has a confidence below the threshold is omitted. Since the best
confidence threshold is dependent on the model itself and on the intended use, there
is no universal value which should be used. Which threshold is best for application
can be determined during the evaluation step. However, since the toolbox used
for evaluation cannot handle a too high number of bounding boxes, the script was
executed multiple times at 20%, 30%, 40%, and 50% confidence threshold. If the
number of bounding boxes is too high for the toolbox for a given threshold, the next
higher threshold can be used.

3.5 Model Evaluation
There is a number of different metrics which can be used to evaluate the performance
of a CNN. While classification tasks can be evaluated with comparatively simple
measures such as the F1 score [Lam et al., 2021], evaluating object detection models
requires more sophisticated metrics since not only the classification, but also the
bounding box parameters of a detected object have to be considered.

3.5.1 Evaluation Metrics

The metrics used for object detection models usually depend on the benchmark data-
set used for evaluation. For the PASCAL VOC dataset, the Average Precision (AP)
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of each class and the corresponding mean Average Precision (mAP) for all classes
is used, evaluated at an Intersection over Union (IoU) of 0.50 [Padilla et al., 2021].
Since, the PASCAL VOC dataset format was used in this project, the results were
evaluated by those metrics as well. The AP has the advantage that it evaluates the
model against different confidence thresholds. The following gives a brief overview
over the necessary concepts and the evaluation process by example.

Each class is evaluated independently by comparing how well the detected bound-
ing boxes (txt files) represent the ground truth bounding boxes (XML files). When
comparing ground truth values and predicted outcomes, one distinguishes four dif-
ferent cases:

• True Positive (TP): the model correctly detected Senecio jacobaea

• False Positive (FP): the model detected Senecio jacobaea where there is none
in reality

• True Negative (TN): the model correctly detected that there is no Senecio
jacobaea

• False Negative (FN): the model did not detect Senecio jacobaea when in reality
there is a specimen

3.5.1.1 Intersection over Union (IoU)

Whether a detection is considered correct or not depends on the IoU which is the
ratio of the intersecting area to the area of the union of ground truth bounding
box Bgt and predicted bounding box Bp [Padilla et al., 2021] and is thus given by
equation 3.1 which is illustrated in figure 3.11.

J(Bp, Bgt) = IoU = area(Bp ∩ Bgt)
area(Bp ∪ Bgt)

(3.1)

area of intersection
area of union ==IoU

Figure 3.11: Intersection over Union (IoU). Own illustration, based on Padilla et al.
[2021].

For the evaluation, an IoU threshold of 0.50 was used, which is the standard value
[Padilla et al., 2021]. Therefore, predictions with an IoU higher than 0.50 for one
of the ground truth labels of the same class are considered TPs, while detections
with an IoU below 0.5 are considered FPs. An IoU of 1.0 would occur when both
bounding boxes are perfectly covering each other, while an IoU of 0.0 would occur
when there is no overlap between the bounding boxes at all.
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3.5.1.2 Precision and Recall

As mentioned in the previous section, each detected object has a confidence value
associated with it and during inference, a confidence threshold τ was used which
filters out all predictions below the threshold. SSD-MobileNet-v1 outputs 3000
bounding boxes per image, most of which are false and have a low confidence value.
The goal of the confidence threshold τ is to filter out all those false, low-confidence
detections. What the threshold should be is dependent on the model itself and on
the intended use, so it must be found experimentally using the test dataset.

When setting τ too high, the model would rarely make a false detection but it
would miss a lot of objects in the image. On the other hand, when setting τ too
low, it would find almost all objects but it would also make many false predictions.

This is described by the concepts of precision and recall. Precision refers to the
percentage of correct positive predictions; i.e. out of all predictions, how many are
true. Recall refers to the percentage of found ground truth boxes; i.e. out of all
real objects, how many were detected [Padilla et al., 2021; Lam et al., 2021]. Since
the number of TPs, FPs, TNs, and FNs is dependent on τ , precision and recall are
also functions of τ . When considering a dataset with G ground truths objects and
a model which outputs N detections of which S are true, precision and recall are
given by equations 3.2 and 3.3, respectively.

Pr(τ) =

S∑
n=1

TPn(τ)
S∑

n=1
TPn(τ) +

N−S∑
n=1

FPn(τ)
=

S∑
n=1

TPn(τ)

all detections(τ) (3.2)

Rc(τ) =

S∑
n=1

TPn(τ)
S∑

n=1
TPn(τ) +

G−S∑
n=1

FNn(τ)
=

S∑
n=1

TPn(τ)

all ground truths (3.3)

Note that TP(τ) and FP(τ) are decreasing functions of τ since a larger τ reduces
both the number of TPs and FPs as they are filtered out by the threshold. On the
other hand, FN(τ) is an increasing function of τ as a higher threshold leads to more
missed ground truth objects. Furthermore, ∑

TP (τ) + ∑
FN(τ) is just the number

of ground truth objects and thus a constant which is not dependent on τ . Hence,
the recall Rc(τ) is a decreasing function of τ : the lower the threshold, the higher
the recall as more detections are considered. The precision however can decrease or
increase with increasing τ [Padilla et al., 2021].

An ideal model should find all ground truth objects (recall of 1.0) while not making
any false predictions (precision of 1.0.).
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3.5.1.3 Precision × Recall Curve

The Average Precision can then be calculated from the precision × recall curve
(Pr × Rc). Table 3.6 shows an example for how to process and evaluate the outputs
of an object detection model with respect to the ground truth values.

Table 3.6: Example for evaluating outputs of an object detection model. The ex-
ample dataset has 8 ground truth bounding boxes.

BBox τ IoU IoU>0.5? ∑ TP ∑ FP Pr(τ) Rc(τ) Printerp.(τ)
B 99% 0.80 True 1 0 1.000 0.125 1.000
G 95% 0.93 True 2 0 1.000 0.250 1.000
D 94% 0.71 True 3 0 1.000 0.375 1.000
C 84% 0.44 False 3 1 0.75 0.375 0.800
A 76% 0.65 True 4 1 0.800 0.500 0.800
F 72% 0.00 False 4 2 0.667 0.500 0.714
E 67% 0.53 True 5 2 0.714 0.625 0.714

Each row represents a bounding box predicted by the model and the predictions
are ordered by their confidence τ . Afterwards, the IoU with the corresponding
ground truth bounding box is calculated and it is checked whether the IoU is above
the threshold of 0.5. If that is the case, the prediction is considered TP, otherwise
FP. The rows ∑ TP and ∑ FP represent the cumulative sum of TPs and FPs.
For each row, precision and recall are calculated using equations 3.2 and 3.3 (the
number of ground truth values is 8 in this example). Since the recall is a decreasing
function of τ , it continues to increase with each row (with decreasing τ). On the
other hand, the precision increases with each new TP and decreases with each new
FP. Therefore, Pr×Rc shows a zig-zag pattern. The last column is the interpolated
precision. For a given row, the interpolated precision is the maximum precision of
that row and all rows below. The interpolated precision thus flattens the zig-zag
pattern of the curve.

A table like 3.6 can help to find the right confidence threshold for the application of
the model later on. For example, if the minimum precision during application should
be 80%, a confidence threshold of 76% should be used. Or, if it is more important to
find most of the objects rather than making always correct predictions, a confidence
threshold of 67% should be used. Here, some of the precision is traded off in order
to obtain a higher recall. Which of the two is more important would depend on the
intended use.

Figure 3.12 shows the precision × recall curve of table 3.6. The black points are
the precision and recall values from the table which show the typical zig-zag pattern.
The red line is the interpolated precision × recall curve.
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Figure 3.12: (Interpolated) Precision × Recall curve of table 3.6.

3.5.1.4 Average Precision and mean Average Precision

The Average Precision is the area under the interpolated Pr × Rc curve as shown
in figure 3.12. Like precision and recall, the AP is always within 0 and 1. An AP of
1.0 means that the model found all ground truth objects without making any false
predictions; i.e. both recall and precision are 1. An AP of 0.0 means that the model
did not find any of the ground truth objects; i.e. both recall and precision are 0.
For the example above, the AP was 0.5643 or 56.43%.

There are different ways of evaluating the area under the curve. One method is
to sample the Printerp. × Rc curve at 11 equidistant points and calculate their mean
value (N-point interpolation). Another method, which is the one that was used in
this project, is the all-point interpolation which considers every point on the curve.

As mentioned before, the AP is calculated individually for each class. To measure
the performance of a model as a whole, the mean Average Precision is used which
simply calculates the mean AP of all classes [Padilla et al., 2021].

3.5.2 Toolbox for Object Detection Metrics

Padilla et al. [2021] provide an open-source toolbox for object detection metrics
which allows to evaluate model performances based on ground truth labels and
model outputs in a variety of commonly used formats. The GitHub repository of
their project includes a more detailed description of how to install and run the
toolbox.

Figure 3.13 shows the Graphical User Interface of the toolbox. In 1) and 2), the
paths to the ground truth labels and the images of the test dataset were specified.
In 3) the dataset format was set to PASCAL VOC format. In 4) the path to the
model predictions was given and in 5) the format of the coordinates was chosen
appropriately. In 6) the AP per class and the mAP were chosen as metrics to
calculate at an IoU of 0.5. In 7), the output folder, where the evaluation results
were saved, was specified. Finally, the evaluation was started in 8).

This process was done for each of the three models at the lowest possible confidence
threshold. For model 1 and 2, the model predictions with 20% confidence threshold
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Figure 3.13: GUI of the object detection metrics toolbox provided by Padilla et al.
[2021].

could be used, while for model 3 30% had to be used due to the large number of
bounding boxes at 20% threshold which the toolbox was unable to process.

By default, the toolbox only prints the values of the requested metrics and saves
plots of the precision × recall curves. Since the toolbox is an open-source software
written in Python, the source-code could be slightly modified to save raw data as
shown in table 3.6 as a Comma-Separated Values (CSV) file and some metadata in
a text file. The raw data was then used to create and analyse the precision × recall
curves in Python which is shown in the results.

3.5.3 Visualizing Model Outputs

For discussing the outcomes of the three models and finding possible problems which
could be addressed in future works, a Python tool was written for plotting the test
dataset images with the predicted and ground truth bounding boxes using OpenCV.
The script can be found on the project repository [Zender, 2021] and can be run
from the command line as shown in listing 3.11.

Listing 3.11: Command for running the ImageViewer utility for visualizing bounding
boxes on images.

1 /custom_scripts$ python ImageViewer .py -i ’<image path >’ -l ’<path
to ground truth labels >’ -p ’<path to predicted bounding boxes >’

-o ’<output path >’
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The command opens an OpenCV window which can be navigated using the key-
board. a and d can be used to skip through the images of the test dataset. p and l
toggle the visibility of predicted and ground truth bounding boxes, respectively. t
toggles the visibility of the class label. s saves the image as displayed to the output
folder and ESC quits the program. The script was used to create the figures in the
results section.
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4 Results

The results are presented separately for each of the three models shown in table 4.1.

Table 4.1: Overview over the three different models which were evaluated and their
properties.

Model Epoch Classes Trained on τ IoU
1 95 Senecio 1702 images 20% 0.50
2 92 Senecio_s, Senecio_m, Senecio_l 1702 images 20% 0.50
3 95 Senecio 851 images 30% 0.50

4.1 Model 1: Original Dataset
Model 1 was trained on the original dataset consisting of 1702 training images and a
single class Senecio. For evaluation, a confidence threshold of 20% was used. Table
4.2 shows the results of model 1 on the test dataset.

Table 4.2: Results of model 1 on the test dataset.
Parameter Value
Total Positives (Ground Truth) 564 instances in 214 images
Total Positives (Predictions) 599 instances in 193 images
Total True Positives 198
Total False Positives 401
Average Area of BBoxes (Ground Truth) 23823.78
Average Area of BBoxes (Predictions) 52032.08
Precision 0.33055
Recall 0.35106
AP/mAP 0.21928

The model found 35.11% of the ground truth objects and 33.06% of its predic-
tions were correct. Even though, model 1 did not distinguish between different size
classes as model 2 does, it seems to be better at detecting larger specimens of Sene-
cio jacobaea. This is shown by comparing the average areas of ground truth and
predicted bounding boxes. While the average are of ground truth bounding boxes is
only 23824 pixel2, the average area of predicted bounding boxes was much larger at
52032 pixel2. Overall, the model achieved an AP of 21.93% which is also the models
mAP since it only has a single class Senecio.
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Figure 4.1 shows the precision × recall curve (a) and the interpolated precision
× recall curve (b) used for calculating the AP which is given by the area of the
grey-shaded region under the interpolated precision × recall curve in b).

Since the detections are ordered by confidence scores before calculating precision
and recall, the leftmost parts of the curve are associated with the highest confidence.
The confidence score of the detections thus decreases with increasing recall. The
lower the confidence score, the higher the probability that the detection is false.
Therefore, the interpolated precision decreases with decreasing confidence and in-
creasing recall. This explains the shape of the precision × recall curve. Setting a
confidence threshold greater than 0 essentially cuts off the right part of the curve.
However, since most predictions below the confidence threshold are false, the pre-
cision would rapidly drop while the recall would only slowly increase. The curve
would thus get very flat and the area under the (interpolated) precision × recall
curve would only marginally increase. Therefore, setting a confidence threshold of
20% or 30% does not significantly alter the resulting curves and APs.

It should be noted that the metrics like precision, recall, AP, and mAP not only
depend on the confidence score but also on the used IoU threshold. For other data-
set formats like MS COCO, those metrics are usually also calculated at different
IoU thresholds [Padilla et al., 2021]. As explained, the IoU measures how well pre-
dicted and ground truth bounding boxes overlap and the IoU threshold determines
whether a prediction is considered TP or FP. Choosing a higher, more restrictive
IoU thus results in more FPs, consequently in a lower precision and recall, and
therefore a lower AP and mAP, and vice versa. Since using an IoU of 0.50 with the
PASCAL VOC dataset is the standard method, it was used here as well.
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Figure 4.1: a) precision × recall curve, b) interpolated precision × recall curve of
model 1 on the test dataset with τ = 0.2 and an IoU of 0.50.
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4.2 Model 2: Influence of Object Size
The training, validation and test dataset of model 2 were the same as with model
1 but the ground truth labels consisted of three different size classes. Senecio_s
refers to all specimens of an area of 20000 pixel2 or less. Senecio_m refers to all
specimens between 20000 and 40000 pixel2, and Senecio_l refers to all specimens
larger than that. In total, the test dataset contained 564 ground truth objects in 214
images for all three classes combined. The model found 313 objects in 149 images
of which 102 were TPs.

Table 4.3: Results of model 2 on the test dataset.
Parameter Senecio_s Senecio_m Senecio_l
Instances in Complete Dataset 3535 1281 907
Total Positives (Ground Truth) 344 132 88
Total Positives (Predictions) 38 82 193
Total True Positives 13 36 53
Total False Positives 25 46 140
Precision 0.34211 0.43902 0.27461
Recall 0.03779 0.27273 0.60227
Average Precision (AP) 0.01995 0.17688 0.38626
mean Average Precision (mAP) 0.19436

Table 4.3 shows the results for all three object classes of model 2 on the test
dataset. Figure 4.2, 4.3 and 4.4 show the precision × recall curves (a) and the
interpolated precision × recall curves (b) of model 2 for the classes Senecio_s,
Senecio_m and Senecio_l, respectively.

Even though Senecio_s had almost 4 times as many samples in the complete
dataset as Senecio_l and almost 3 times as many as Senecio_m, it had the least
amount of detections while evaluating the model on the test dataset. As the amount
of training data on small specimens was significantly larger than that of medium-
sized and large specimens, the model should be optimized best for finding small
Senecio jacobaea. In the test dataset, the number of small, medium-sized, and large
specimens is comparable to the distribution in the complete dataset. Therefore, it
could be expected that the model would find small specimens most consistently,
which is not the case. It not only had an extraordinarily low recall, finding only
3.78% of the ground truth objects but also had the least total amount of predictions
for Senecio_s. Even though the precision was close to the mean of all three classes,
the low recall resulted in an AP of only 2% which is by far the lowest of the three
classes.

The values for the medium-sized Senecio_m are in between of the two other
classes apart from the precision. For Senecio_m the model had a significantly higher
recall, finding 27.27% of all medium-sized ground truth specimens. Furthermore, the
model showed the highest precision for medium-sized specimens since 43.90% of the
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predicted objects were TPs. Overall, the AP for this class was 17.69% which is just
below the mean.

Senecio_l, representing the large specimens, had the lowest number of samples
in the training and test dataset but had the highest number of predictions by the
model. The model found the majority of ground truth objects at a recall of 60.23%
which is by far the highest value of any class in any of the three models. However,
compared to the small and medium-sized classes, it also made the most false predic-
tions resulting in a precision of only 27.46% which is the lowest of the three classes.
Nevertheless, Senecio_l achieved the highest AP at 38.63%.

The mAP, the mean of the AP for all three classes, was 19.44% which is 2.49%
less than that of model 1.
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Figure 4.2: a) precision × recall curve, b) interpolated precision × recall curve of
model 2 for class Senecio_s on the test dataset (τ = 0.2; IoU = 0.50).
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Figure 4.3: a) precision × recall curve, b) interpolated precision × recall curve of
model 2 for class Senecio_m on the test dataset (τ = 0.2; IoU = 0.50).
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Figure 4.4: a) precision × recall curve, b) interpolated precision × recall curve of
model 2 for class Senecio_l on the test dataset (τ = 0.2; IoU = 0.50).

4.3 Model 3: Influence of Dataset Size
Model 3 was trained on the same dataset and the same Senecio class as model 1.
The only difference was that the size of the training dataset was reduced by 50%
to find out how much of an influence the dataset size has on the performance of
the model. Furthermore, for the evaluation part, the confidence threshold was set
to 30% as opposed to the 20% of models 1 and 2. At 20% confidence, the model
predicted 241884 objects which was too much for the toolbox to handle. However,
the vast majority of these predictions would have been FPs since there are only
564 ground truth objects in the test dataset resulting in a precision of less than
0.25%. Therefore, the area under the precision × recall curve would have been only
marginally higher than with the 30% threshold.

Table 4.4: Results of model 3 on the test dataset.
Parameter Value
Total Positives (Ground Truth) 564 instances in 214 images
Total Positives (Predictions) 51 instances in 35 images
Total True Positives 24
Total False Positives 27
Average Area of BBoxes (Ground Truth) 23823.78
Average Area of BBoxes (Predictions) 42084.12
Precision 0.47059
Recall 0.04255
AP/mAP 0.02876

Table 4.4 shows the results of model 3 on the test dataset. 47.06% of the predic-
tions were correct but only 4.26% of the ground truth objects were found which is
much less than in model 1. However, the final precision and recall cannot really be
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compared with the other models due to the different confidence threshold, resulting
in the curve being cut at a different position.

Figure 4.5 shows the normal (a) and interpolated (b) precision × recall curve of
model 3 for the test dataset. When comparing the curves of model 1 and model 3, it
can be seen that the curve of model 3 is much steeper; i.e. the precision of model 3
decreases much more rapidly with decreasing confidence and increasing recall. This
is also shown by the very low mAP of 2.88% compared to model 1 with an mAP of
21.93%. Reducing the training dataset size by a factor of 2, reduced the mAP by a
factor of 7.61.
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Figure 4.5: a) precision × recall curve, b) interpolated precision × recall curve of
model 3 on the test dataset with τ = 0.3 and an IoU of 0.50.

4.4 Samples from the Test Dataset
To see how the three models perform on the same image, five samples from the
test dataset were collected using the ImageViewer.py script from section 3.5.3.
For model 1 and 2 the 20% confidence threshold was used. For model 3 a 30%
confidence threshold was used since otherwise the sample images would be filled
with low-confidence bounding box predictions.

It should be noted that the five samples are not necessarily representative for
the performance of the models for the whole dataset, which is better described by
the precision × recall curves. The images were selected because they represent
the diversity of the dataset well and highlight interesting outcomes of the different
models.

Figure 4.6 shows the predictions of model 1 (a), model 2 (b), and model 3 (c)
as well as the ground truth labels for image kam_210515_n_acb4_0023. Predicted
bounding boxes are red, while ground truth bounding boxes are cyan. The image
features a single large specimen of Senecio jacobaea which all three models managed
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to detect. Model 1 and 2 overestimated the size of the bounding box while model 3
underestimated it. Furthermore, both model 1 and 2 predicted the specimen twice.

a) b) c)

Figure 4.6: Predictions (red) of a) model 1, b) model 2, and c) model 3 on image
kam_210515_n_acb4_0023. Ground truth labels are in cyan.

Figure 4.7 shows the model predictions for image kam_210515_n_acb4_0039. The
image contains two medium-sized and one large specimen which are partly obscured
by other vegetation or cut off at the image edge. While model 3 was not able to
detect any specimens, model 2 detected two of them. Model 1 was the only one that
found all three specimens. However, it predicted one of them twice and also falsely
recognized a patch of grass as Senecio jacobaea.

a) b) c)

Figure 4.7: Predictions (red) of a) model 1, b) model 2, and c) model 3 on image
kam_210515_n_acb4_0039. Ground truth labels are in cyan.

Figure 4.8 shows the model predictions for image kle_210516_n_acb4_0184. The
image contains 17 small specimens of Senecio jacobaea. Despite the large number
of ground truth objects, there were barely any predictions. Model 3 again did not
find any objects. Model 2 did not find any specimen but falsely identified a patch of
bare soil as Senecio jacobaea. Model 1 made the same false prediction but correctly
identified the largest of the specimens twice and was thus the only model to make
any correct prediction.
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a) b) c)

Figure 4.8: Predictions (red) of a) model 1, b) model 2, and c) model 3 on image
kle_210516_n_acb4_0184. Ground truth labels are in cyan.

Figure 4.9 shows the model predictions for image leu_210601_n_acb4_0307 which
contains a single medium-sized specimen. None of the models correctly identified
the Senecio jacobaea specimen but all made different sets of false predictions. Model
1 and 2 made two, and model 3 made three false predictions mistaking Urtica dioica
for Senecio jacobaea. Additionally, model 1 made three, and model 2 one false
prediction for a specimen of Rumex obtusifolius.

a) b) c)

Figure 4.9: Predictions (red) of a) model 1, b) model 2, and c) model 3 on image
leu_210601_n_acb4_0307. Ground truth labels are in cyan.

Figure 4.10 shows the model predictions for image moe_210527_a_acb4_0102 con-
taining one large specimen. All three models found the specimen, model 1 predicting
it twice. However, model 2 falsely identified one, and model 1 three specimens of
Cirsium vulgare as Senecio jacobaea.

a) b) c)

Figure 4.10: Predictions (red) of a) model 1, b) model 2, and c) model 3 on image
moe_210527_a_acb4_0102. Ground truth labels are in cyan.
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5 Discussion

5.1 Discussion of Sample Images
The sample images in the results section highlight some interesting problems which
are worth to be discussed in more detail.

5.1.1 Distorted Bounding Boxes

During application, the model should be used to detect possible candidates for
Senecio jacobaea in aerial images of a greater height (e.g. 5 meters). Each possible
candidate would be enclosed in a bounding box from which the GPS coordinates
could be extracted if the camera points directly downwards, the GPS coordinates of
the camera are known, and the orientation of the drone is known.

If those conditions are met, the position of the specimen can be found by calculat-
ing the center point of the bounding box like it was done in the dataset visualization
in section 3.1.4. In some of the test samples in section 4.4, the bounding boxes were
distorted compared to the ground truth labels and did not cover the entire specimen
or included unnecessary surrounding vegetation. While for certain tasks, such errors
of the model might be an issue, it would likely not be a problem for this application
since only the center point is relevant for calculating the position. If height and
width of the bounding box are distorted equally on both sides (figure 4.6a and b,
4.10c), the center point would still be correct. Even if the distortion is slightly off
on one side (figure 4.6c, 4.7, 4.10a and b) of the bounding box, it would still not be
a problem as long as the center point of ground truth and predicted bounding boxes
remain close to each other, which was the case for most TPs in the test dataset.

5.1.2 Small Bounding Boxes

When observing the sample images (figure 4.8), it becomes evident that the model
clearly has problems detecting smaller specimens. This is further illustrated in table
4.3 showing the evaluation results of model 2. The smallest size class Senecio_s
had by far the most instances in the whole dataset which means that the model
should have learned to recognize that class the best. The test dataset also consisted
of Senecio_s by more than 60%. However, not only the recall for that class was
significantly lower than for the other classes but also the absolute number of pre-

43



dictions. The influence of the bounding box size also shows in model 1 and 3 when
comparing the average sizes of predicted and ground truth bounding boxes (table
4.2 and 4.4). In both cases, the size of predicted bounding boxes was significantly
higher indicating that mostly the large specimens were detected.

Compared to the two larger size classes, there was clearly no lack of training data
for Senecio_s. Therefore, it can be concluded that the problem of the model not
finding smaller specimens is directly related to the size of the objects. For a human
eye, the small specimens were still easily recognizable during the labelling process
(figure 4.8) at an image resolution of 1024 × 768 pixel. However, images are resized
to 300 × 300 pixel before the model evaluates them [Franklin et al., 2016; Liu et al.,
2016]. During this image compression, lots of information are lost and features like
edges which are easily recognizable at a high resolution might be no longer visible.
For detecting small objects in images, current object detection methods which are
based on CNNs usually show a significantly lower performance, since small objects
tend to lack characteristic shapes and textures [Stojnić et al., 2021]. Furthermore,
the classification and regression of the bounding boxes is done using the inputs from
the last layers. Since the size of the feature maps usually gets lower from layer to
layer, these final layers have a much lower resolution than the input layer. A small
specimen of Senecio jacobaea might then be represented by only a few or even a
single pixel which makes it hard or even impossible to perform classification and
bounding box regression for that object [Bosquet et al., 2018].

The only property of the specimen by which it can be identified at such a low
resolution might be its color. This becomes problematic when the background colour
is too similar which is likely the case here. As the surrounding vegetation is coloured
in similar shades of green, the only property by which the small specimens can be
found is lost causing the models to perform so poorly on smaller Senecio jacobaea.

5.1.3 False Predictions

During inference on the test dataset all three models made false predictions by
either misidentifying other plants or background for Senecio jacobaea (FPs) or by
not detecting an existing specimen (FNs).

5.1.3.1 False Positive Detections

In some cases the models made a false prediction for plants that are very similar
in their appearance (figure 4.10a and b) due to their rosette-like growth form such
as spear thistles (Cirsium vulgare) which were not only difficult for the models to
distinguish but were sometimes even challenging during the labelling process due to
their similar colour, growth form, and size. Since part of the shapes and textures
that distinguish the two is lost during the resizing to the model input size, those
plants commonly led to FPs. Other similar looking plants present in the dataset
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such as catsear (Hypochaeris radicata) or common dandelion (Taraxacum officinale)
were usually not as problematic due to their smaller size which made them harder
for the models to find and misidentify.

In other cases (figure 4.9, 4.7a), the models misidentified plants that should be
much easier to distinguish from Senecio jacobaea such as stinging nettle (Urtica
dioica) or broad-leaved dock (Rumex obtusifolius), among others. However, some-
times the models falsely identified objects which have barely anything in common
with Senecio jacobaea such as patches of bare soil (figure 4.8a and b) or tree trunks.

This raises the question what it is that the models are actually looking for when
detecting Senecio jacobaea. During the labelling process, the specimens were iden-
tified by a variety of features. Smaller specimens could usually be recognized by
their lyre-shaped leaves while larger specimens tended to have more, cabbage-like
leaves. Good indicators in general were the rosette-like structure and the colour
which usually had a blueish tint compared to the other vegetation. This is how a
human would identify an object in an image. However, the predictions of the models
might be made on a completely different basis.

Although there have been attempts at visualizing the features that are identified
in feature maps [Zeiler and Fergus, 2014], deep learning is still considered a black
box whose decisions cannot be properly explained [Yamashita et al., 2018]. How
fundamentally different a CNN sees and evaluates an image compared to a human
can be illustrated by adversarial examples. An adversarial example is an image
which is manipulated in a subtle way by adding a small amount of noise, which
is not visible to the human eye. However, the CNN changes its originally correct
prediction and predicts a wrong class at a high confidence [Goodfellow et al., 2015].
This shows how different the vision of a CNN is compared to a human, which also
makes it very difficult to explain why the model would falsely identify a patch of
soil or a tree trunk as Senecio jacobaea.

The purpose of the model would be to find possible candidates of Senecio jacobaea
and extract their GPS coordinates from aerial images captured on a UAV. After-
wards, another UAV or field robot could directly move towards those candidates and
collect an image from a closer distance to evaluate at a higher precision whether the
candidate actually is Senecio jacobaea or not. That means that all positive predic-
tions would be validated using another more precise model trained on closer images.
Thus, False Positive predictions would be sorted out in the confirmation step and
would not cause any harm.

5.1.3.2 False Negative Detections

In other occasions, the models failed to identify a specimen of Senecio jacobaea
resulting in a False Negative prediction. This might be caused due to the specimen
being too small (figure 4.8), being partly obscured by other vegetation or being cut
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off at the image edge (figure 4.7), or due to low contrast to the background (figure
4.9).

In contrast to FPs, FNs would not be validated again by the second UAV or field
robot since their locations would not be mapped as they would not be detected
by the first UAV. A false negative prediction of the model would thus have worse
consequences as the error could not be corrected. An FP would just result in a small
amount of additional work, while an FN would directly impair the quality of such a
weed control project as the plant would not be found and removed.

Therefore, if such a model would be applied in a weed control project for Senecio
jacobaea, it would be better to trade off a bit of the precision in order to increase the
recall. It would be more important to find all specimens than to make only correct
predictions since all predictions would be validated again before taking action. To
achieve the desired trade-off between precision and recall, the confidence threshold
must be set accordingly by analysing the precision × recall curve of the model.

5.1.4 Duplicate Bounding Boxes

In some instances, the model detected the same specimen more than once (figure
4.6a and b, 4.7a, 4.8a, 4.10a). These redundant bounding boxes are problematic
during the evaluation of the model as well as during a possible application.

When using the model for weed control, each plant should only be detected once
to ensure that it also only receives a single treatment to remove it. Otherwise,
unnecessary amounts of herbicides would be used potentially causing harm to the
ecosystem. Redundant bounding boxes should therefore be filtered out before cal-
culating the GPS coordinates of the different candidates.

However, redundant bounding boxes already become problematic during the eval-
uation step. The toolbox used in this project [Padilla et al., 2021] directly uses
the model outputs and ground truth labels for evaluating the model performance.
Whether a detection is considered true of false is evaluated for each bounding box
individually without taking other detections into account. The evaluation therefore
does not include a filtering step in which redundant bounding boxes are sorted out.
When considering each detection individually, only the class and the IoU of the pre-
dicted and ground truth bounding box determine whether it is considered true or
false. In the examples from the test dataset mentioned above, the class was always
predicted correctly and the IoU was always above the 0.5 threshold value used for
evaluation. Therefore, all of the redundant bounding boxes would be considered true
by the toolbox. This introduces an error to the precision and recall distorting the
evaluation results. When observing the precision × recall curve, the model performs
better on paper than it does in reality because specimens detected more than once
are counted multiple times. That means, in reality, the models did not find as many
of the specimens as indicated by their recall values. When observing the samples
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from the test dataset, this seems to be especially problematic for model 1 which in
general had the highest number of redundant bounding boxes.

Consequently, the duplicate bounding boxes should be filtered out of the model
output to obtain a more realistic evaluation and to prevent repeated herbicide
treatment of the same specimen. This can be done through a process called Non-
Maximum Suppression (NMS) which is sometimes already included in multi-stage
detectors like R-CNN [Padilla et al., 2021] but not in single-step detectors like SSD-
MobileNet-v1. NMS is a post-processing algorithm which merges all detections
referring to the same ground truth object [Hosang et al., 2017].

The algorithm processes each class individually. It finds the detection with the
highest confidence score, assumes that it is true and then removes any detections
which are likely belonging to the same ground truth object by calculating the IoU
between the high-confidence detection and the remaining ones. If the IoU is above
a certain threshold, i.e. the bounding boxes are rather similar, they are likely
duplicates and the detection with the lower confidence value is removed. After the
first filter step, the bounding box with the second highest confidence (which would
belong to another object) is chosen and the process is repeated again to remove any
of its duplicates. This is done until the list of detections is exhausted. Afterwards,
the filtered model output can be used to evaluate it more realistically or to extract
GPS coordinates of possible candidates of Senecio jacobaea.

It should be noted that the IoU threshold by which NMS filters the model output
should be chosen with care since it may happen that two ground truth objects
actually overlap substantially or are very closely together. If the threshold is set too
low, only a single detection would remain even if the model originally found both
objects. As a result, the recall would decrease as an actual, non-duplicate TP would
be removed [Hosang et al., 2017]. The IoU for NMS must therefore be adjusted to
suit the individual application.

5.2 Problems with the Dataset
Apart from the issues discussed previously based on the samples of the test dataset,
there might be some general problems with the datasets used for training the models.

5.2.1 Missing Annotations

Even though, the dataset was created and labelled with great care, it is possible that
there are errors in the dataset. In some cases, the specimens of Senecio jacobaea
were difficult to identify for example due to similarities with other plant species,
small size, or too low contrast with the surrounding vegetation. It can therefore not
be guaranteed that every specimen in the dataset was found and some annotations
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might be missing. A dataset containing incorrectly labelled data or data without a
label decreases the quality of the trained model.

How strongly missing annotations affect the mAP of different object detection
models was investigated by Xu et al. [2019]. The instance-level missing label rate
Mr is the fraction of instance labels that are missing in a dataset. The study
evaluated the performance of different Fully-Supervised Object Detection (FSOD)
detectors like R-CNN, You Only Look Once (YOLO), or SSD which is the detector
used in SSD-MobileNet-v1. The PASCAL VOC 2007 dataset was used to train the
detectors with different missing label ratios Mr. The study concluded that FSOD
detectors are considerably impinged by the quality of the dataset and that the mAP
drops significantly as Mr increases. However, the significant drop in performance
occurred for Mr larger than 0.5. For lower Mr, the mAP usually decreased only
slightly [Xu et al., 2019]. Since the fraction of missed Senecio jacobaea specimens
in the dataset is likely much lower then 50%, the effect of potentially missing labels
on the mAP of the models can be assumed to be marginal.

5.2.2 Size Classes

A possible problem specific to the second model is the distribution of the dataset
into three different size classes. As explained in section 3.3.1, the main idea was that,
since all images were taken at the same height, the bounding box size corresponds
to the growth phase of the specimen. As the shape and amount of leaves is typically
dependent on the growth phase, dividing the Senecio class into sub-classes based
on bounding box size would organize the specimens into groups with similar features
making it easier for the model to learn them.

The distribution into the three size classes was done automatically by setting two
size thresholds as shown in figure 3.7. This however raises the question how to set
these boundaries to get the best result. Here, the thresholds were set more or less
arbitrarily by observing the bounding box size distribution. The problem with using
fixed threshold values for grouping the specimens is that they are grouped solely
based on their size but not their features. Two specimens might be extremely similar
in appearance while one belongs to Senecio_s and the other to Senecio_m because
their bounding box size is close to the 20000 pixel2 threshold. Furthermore, how the
leaves of a specimen are spread (direction and angle to the ground) greatly influences
the size of its bounding box which makes the method even more inaccurate.

The automatic grouping of data based on bounding box size was a very fast
and easily adjustable method, which worked excellently for showing the influence
of a specimens size on the models ability to find it. For optimizing the model
performance, it would be better to group the data based on their features directly
instead of their bounding box size. However, this would require much more work
since the whole dataset would have to be relabelled manually.
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5.2.3 Composition of the Dataset

Another issue might be that the different conditions under which the data was
collected are not represented equally in the dataset as can be seen in table 3.2.
The majority of images was taken at noon, during sunny weather in forest or park
areas. In contrast to that, images taken in the morning or evening or in pastures
and meadows are under-represented in the dataset. If the model is to face such
conditions during application, it would have more difficulties to recognize Senecio
jacobaea.

Therefore, for making the model more robust to various conditions, the dataset
should represent the different circumstances more evenly.

5.2.4 Illumination of Senecio jacobaea

Lastly, differing lighting conditions could be problematic during application of the
model since they already posed difficulties during the labelling process. The annota-
tions for data collected on cloudy days or within shady areas were usually easier to
create compared to the annotations of images with a lot of direct sunlight.

Areas which were not illuminated directly by the sun tended to be much more
homogeneous in terms of brightness and showed less contrast. Especially the diffuse
lighting during cloudy weather caused each surface to be illuminated more evenly.
Due to this, it was easier to identify and follow edges in the image and distinguish
different objects. Furthermore, the colour of Senecio jacobaea appeared to be much
more homogeneous among those images.

Opposed to that, images taken under direct sunlight were often much more difficult
to annotate. Since only the surfaces facing the sun were properly illuminated, the
images were high in contrast and there was a lot of noise in the image due to shade
of overlapping vegetation. Furthermore, the colour of Senecio jacobaea was much
more inconsistent among the images taken under sunny conditions. Sometimes the
leaves partly appeared as a dark green or even black when there was too much
shade while in other occasions the leaves appeared white when they reflected a lot
of sunlight back to the camera. These inconsistencies in colours and shapes might
make it much more difficult for the model to properly learn the features of Senecio
jacobaea and to identify it in the field.

Of course it would be convenient if the model would be robust to such inconsist-
encies and different circumstances but that might be difficult to achieve.

5.3 How could the model be improved
There are several things which could be done to improve the model. As mentioned
before, DL projects require a lot of annotated data which was also evident when

49



comparing the performance of model 1 and model 3. Model 1 was trained on the
default dataset and achieved a mAP of 21.93%. Model 3 was trained on the same
dataset but the training dataset was reduced by half which resulted in a mAP of only
2.88%. Therefore, increasing the dataset size would likely yield a better performing
model.

When increasing the dataset size, it should be done such that all possible circum-
stances are represented equally to make the model more robust to various conditions
in the field.

Furthermore, a Non-Maximum Suppression should be applied to the output of the
model. This would ensure that each object is only detected once by removing any
duplicate bounding boxes. Thus, the model evaluation would be more precise and
each specimen would be treated only once during a weed control project, sparing
the ecosystem from unnecessary amounts of herbicides.

The problem of the small specimens not being detected could be addressed with
different approaches. One possibility would be to cut each image into four slices
overlapping each other in the middle and using each slice individually as a a new
sample. Figure 5.1 shows image kle_210516_n_acb4_0184 (1024 × 768 pixel2) split
up into four slices (656 × 492 pixel2) which overlap each other in the center.

Figure 5.1: Image kle_210516_n_acb4_0184 (1024 × 768 pixel2) cut into four slices
(656 × 492 pixel2) overlapping each other in the center.
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The input images are resized to 300 × 300 pixel2 before being evaluated by the
model. Using the default dataset, the whole image would be resized to 300 ×
300 pixel2 but when using image slices, each slice would be resized to 300×300 pixel2.
Therefore, small specimens would appear much larger in the model input and their
distinct features would be conserved better. Model 2 showed that medium sized
specimens were much easier to find than small specimens. Since slicing the images
would essentially convert most of the Senecio_s specimens to Senecio_m specimens
(in terms of specimen size in the model input), it can be expected that the model
would perform at a higher precision and recall. On the other hand, when applying
the model later on, it could only process a smaller area at a time or the same area
at a lower Frames Per Second (FPS) since each image taken by the camera would
have to be sliced and evaluated four times by the model. This method would thus
trade some of the FPS for a higher mAP.

Another option would be to train and test other models using the same dataset.
There are object detectors which work with a larger input image size which might
be better for detecting small specimens. An example would be YOLOv4 whose
backbone uses 512 × 512 pixel2 images as an input [Bochkovskiy et al., 2020]. It
would also be possible to use multi-stage object detectors like R-CNN but that might
exceed the computational power of the NIVIDA Jetson Xavier NX. The disadvantage
would be that the format of the dataset would have to be adjusted to the new model
and a new training toolchain would have to be established.

Lastly, it may be an option to analyse the spectral signature of Senecio jacobaea.
Figure 2.2 shows that Senecio jacobaea tends to have a more blueish colour than
most of its surrounding vegetation. An additional multispectral camera could collect
images of different wavelengths which could be used to calculate a spectral index
that highlights leaves of a such a blueish tint. Spectral indices like the Normalized
Difference Vegetation Index (NDVI) were already used successfully in precision ag-
riculture projects to detect plants in the field [Mogili and Deepak, 2018]. If there
was an area highlighted by the spectral index, the confidence of detections in the
model output for that area could be increased before applying the NMS. So, if an
area is more likely to contain Senecio jacobaea because the spectral index highlights
leaves of a blueish tint there, the confidence for detections there should be artificially
increased based on the value of the spectral index. This could be a way of improving
the model output without changing the model itself.

5.4 Conclusion
It has been proven that it is possible to detect Senecio jacobaea in image data
containing background vegetation of similar colour and appearance at a height of 1m
above ground using SSD-MobileNet-v1. A toolchain was proposed which includes all
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steps from collecting and annotating raw data, visualizing the dataset, training and
inference of the model, to evaluating the final outputs. By modifying the original
dataset, it was shown that the quality of the model highly depends on the size of
the training dataset. Furthermore, the results demonstrated that the ability of the
model to detect Senecio jacobaea was especially reliant on the size of the specimen
where larger specimens had a much higher chance of being detected. Overall, this
project can be seen as a prove of concept that object detection of Senecio jacobaea
in the field is a solvable albeit challenging problem.
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