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Abstract: A direct, reagent-free, ultraviolet spectroscopic method for the simultaneous determination
of nitrate (NO3

−), nitrite (NO2
−), and salinity in seawater is presented. The method is based on

measuring the absorption spectra of the raw seawater range of 200–300 nm, combined with partial
least squares (PLS) regression for resolving the spectral overlapping of NO3

−, NO2
−, and sea salt

(or salinity). The interference from chromophoric dissolved organic matter (CDOM) UV absorbance
was reduced according to its exponential relationship between 275 and 295 nm. The results of the
cross-validation of calibration and the prediction sets were used to select the number of factors (4
for NO3

−, NO2
−, and salinity) and to optimize the wavelength range (215–240 nm) with a 1 nm

wavelength interval. The linear relationship between the predicted and the actual values of NO3
−,

NO2
−, salinity, and the recovery of spiked water samples suggest that the proposed PLS model can

be a valuable alternative method to the wet chemical methods. Due to its simplicity and fast response,
the proposed PLS model can be used as an algorithm for building nitrate and nitrite sensors. The
comparison study of PLS and a classic least squares (CLS) model shows both PLS and CLS can give
satisfactory results for predicting NO3

− and salinity. However, for NO2
− in some samples, PLS is

superior to CLS, which may be due to the interference from unknown substances not included in
the CLS algorithm. The proposed method was applied to the analysis of NO3

−, NO2
−, and salinity

in the Changjiang (Yangtze River) estuary water samples and the results are comparable with that
determined by the colorimetric Griess assay.

Keywords: UV spectroscopy; partial least squares; simultaneous determination; nitrate and ni-
trite; seawater

1. Introduction

Nitrate (NO3
−) and nitrite (NO2

−) are the essential nutrients for marine phytoplank-
ton growth and play a key role in many biogeochemical cycles [1,2]. NO3

−and NO2
−

concentrations in seawater are also important indicators of water quality. Due to human
activities, large amounts of nutrients are discharged into natural waters, thereby destroying
the ecological balance and causing the eutrophication of water bodies [3]. Therefore, accu-
rate quantification of NO3

− and NO2
− is critical for understanding the dynamics of marine

ecosystems. Wet chemical analyses of NO3
− and NO2

− in seawater (e.g., the Griess assay)
have been previously reviewed in the literature [4–6]. These chemical methods require
the addition of chemical reagents, and thus, are time-consuming, and waste is generated
during measurement.

Ultraviolet (UV) spectroscopy is another well-known method for determining NO3
−,

which is based on the strong UV absorption spectrum of NO3
− [7]. It is a standard method

for NO3
− analysis by the American Public Health Association [8]. The advantages of

this method include its simplicity and speed of data acquisition. It avoids the use of any
chemical reagents. Therefore, it can easily be developed into an underwater sensor for
long-term monitoring. However, this method is susceptible to interference from high
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concentrations of Cl− and Br− (or sea salt, salinity) in seawater, which have strong UV
absorbance in the NO3

− absorption range [9]. Previously, multi-wavelength measurement
and classic least square (CLS) regression were used to separate the overlapping spectra
and measure NO3

− [9–12]. However, it did not take NO2
− into account. Although NO2

−

is the least abundant of the major inorganic nitrogen ions (NH4
+, NO3

−, and NO2
−) [13],

it can accumulate at concentrations up to 10 µM in low-oxygen estuary and coastal waters,
oxygen-deficient zones, and upwelling regions [14–18]. In these areas, NO2

− may influence
the NO3

− measurement considering NO2
− has a similar UV absorption spectrum to that

of NO3
− (Figure 1). To date, there is no report on simultaneous determination of NO3

−

and NO2
− in seawater using UV spectroscopy. Langergraber et al. (2003) and Rieger et al.

(2004, 2008) used a submersible UV/VIS spectrometer combined with partial least squares
(PLS) regressions to monitor NO3

−, NO2
−, and even chemical oxygen demand, in the

effluent of municipal wastewater treatment plants [19–21]. However, this method cannot
be applied to analyze NO3

− and NO2
− in seawater. The reason for this is that they do

not eliminate the interference from sea salt and chromophoric dissolved organic matter
(CDOM) in seawater.
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In this study, we aimed to (1) develop a direct, reagent-free, ultraviolet spectroscopic
method to determine NO3

−, NO2
−, and salinity simultaneously based on the PLS model:

(2) select an appropriate number of factors and optimal wavelength range for the PLS
model; (3) evaluate the performance of the proposed method; (4) compare the results of the
PLS and CLS models; (5) apply the proposed method to estuarine water samples.

2. Theory
2.1. PLS Regressions

PLS is a kind of multivariate calibration method based on factor analysis. It is a
combination of principal component analysis, multiple linear regression analysis, and
canonical correlation analysis. The theoretical basis for PLS regression can be found in
several references [22–26]. PLS establishes a quantitative relationship (Equations (1) and (2))
between an n × m matrix (X) of independent variables (absorbance at each wavelength, in
this case) and an n × k matrix (Y) of the predicted values of the variables (NO3

−, NO2
−,

and salinity, in this case). The PLS model can be written as follows

X = TPT + E (1)

Y = UQT + F (2)

where P and Q are the loading matrices of X and Y, which give information about weights
for each predictor in X when calculating latent variables (factors); E and F are the matrices
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of X and Y residuals (both with the same dimensions as the original absorbance and
concentration matrices, respectively); T and U represent the score matrix for X and Y,
which can summarize X and predict Y with small errors in E and F. The decompositions
of X and Y are made to maximize the covariance between T and U. The PLS model is
built using a calibration or training set of samples that have known property values.
Following the establishment of a satisfactory model, the property values in a prediction set
of samples can be predicted. Here, the experimental spectra (matrix X) of single and mix
standards, with known concentrations NO3

−, NO2
−, and salinity (matrix Y), were used as

the calibration set.
PLS calibration of a multi-component system can be performed in two different ways,

PLS1 and PLS2. In PLS1, a separate set of scores and loading vectors is tuned and calculated
for each variable (NO3

−, NO2
−, and salinity). In PLS2, several variables (NO3

−, NO2
−,

and salinity) are fitted simultaneously, and there is one common set of factors for NO3
−,

NO2
−, and salinity [25,27]. Therefore, PLS1 should give more accurate predictions than

PLS2, especially when one of the variables is influenced by a number of factors different
to other variables in the mixture [26,28,29]. However, PLS2 can simplify the procedure
and allows for simultaneous graphical inspection. Thus, PLS2 is faster to use than PLS1.
However, it should be noted that PLS2 usually performs equally well or worse than PLS1
if there is a weak or no correlation between response variables [30,31]. In the present study,
the results from PLS1 and PLS2 models are compared.

2.2. Interference from CDOM

CDOM comprises a significant fraction of the DOM pool in natural waters (~10–90%) [32].
It has strong absorption in the UV range [33,34]. Thus, the interference with NO3

− and
NO2

− from CDOM is of particular concern. CDOM is a mixture of many organic com-
pounds that differ spatially and temporally due to their origin. The spectral shapes of
CDOM vary with the compositions of CDOM. It is difficult to link optical absorbance
directly to CDOM concentrations or compositions [35,36]. Therefore, CDOM cannot be
added to the predictor variable list for the model building. Many previous studies have
suggested that the UV absorption spectrum of CDOM in seawater fits an exponential
function with wavelengths [36–39], which can be given in Equation (3)

ACDOM(λ) = ACDOM(λ0)eS(λ0−λ) + k (3)

where λ is the wavelength (nm), λ0 is a reference wavelength (nm); ACDOM(λ) and ACDOM(λ0)
are the CDOM absorbance at the wavelength of λ and λ0; k is a background constant (m−1),
which accounts for light scattering in the cuvette and drift of the instrument. S is the
spectral slope (nm−1) that describes the approximate exponential rate of decrease in ab-
sorption with increasing wavelengths. In Equation (3), S and a are used to define differences
among different samples. Usually, S is calculated over a broad wavelength range (e.g.,
275–295, 350–400, and 300–600 nm) [36,38,39]. Several previous studies used a quadratic
function [9,40] or linear function [41,42] to fit, approximately, the CDOM spectra. Given the
comparatively high concentrations of CDOM in estuarine and coastal waters, in this study,
we used an exponential function to fit the absorption spectrum of CDOM between 275 to
295 nm. The wavelength 300 nm was chosen as the reference wavelength (λ0). Then this
function was applied to the wavelength from 200 to 240 nm. Thus, the CDOM absorbance
can be subtracted from the raw spectra in the developed PLS model.

2.3. CLS Regression

CLS is the simplest and most widely used technique for solving overdetermined
systems. In its most important application—data fitting—it finds a hyperplane through
a set of data points while minimizing the sum of squared errors [43,44]. For comparison
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with PLS, we also used CLS regression to fit the absorbance spectra of seawater samples
and obtain NO3

− and NO2
− concentrations according to Equation (4)

Aλ = b
(
εNO3

− × CNO3
− + εNO2

− × CNO2
− + εsalinity × salinity

)
+ ACDOM (4)

where b is the pathlength (cm) of the optical cell, ε is the absorption coefficient of the
subscripted species (L mol−1 m−1 for NO3

− and NO2
−, PSU−1 m−1 for salinity), C is the

concentration of the subscripted species. Each ε value can be obtained by measuring the
absorption in standard solutions of each chemical species. The concentrations of NO3

−,
NO2

−, salinity, and all the CDOM coefficients (Equation (4)), were fitted together.

3. Experimental
3.1. Reagents

All chemicals were of analytical reagent grade and supplied by the Sigma-Aldrich
Company (Shanghai, China). The standard solutions of NO3

− and NO2
− were freshly

prepared from NaNO3, NaNO2, and deionized water (Milli-Q water, 18.2 MΩ) before use.

3.2. Apparatus and Software

A UV-Vis spectrophotometer (Specord plus 210, Analytik Jena AG, Germany) was used
to collect absorbance data from 200 to 300 nm. Due to the comparatively low concentrations
and absorbance of NO2

−, all the samples were measured in a 3.0 cm quartz cuvette. Milli-
Q water was used as the reference. The spectral resolution was set as 1 nm. A higher
resolution (e.g., 0.2–0.8 nm) yields similar results. All data-processing scripts, including
PLS1, PLS2 (see the Supplementary Materials), and CLS regressions, were written in
MATLAB for Windows (Mathworks, version 2019b).

3.3. Model Validation

The evaluation of the modelling error was obtained from the analysis of the predicted
vs. actual concentration plots, being the root mean square error of the prediction data
(RMSEP) which provides information about the fit of the model to the calibration data,
the correlation coefficient (R2) between predicted and actual concentration values of the
prediction set, and the relative percentage error in concentration prediction (RE). These
definitions are as follows (Equations (5)–(7))

RMSEP =

√√√√ 1
N

N

∑
i=1

(
Ci − Ĉi

)2 (5)

R2 =

[
∑N

1 (Ci − Ci

)(
Ĉi − Ĉi

)
]2

∑N
1 (Ci − Ci)

2
∑N

1 (Ĉi − Ĉi)
2 (6)

RE =
1
N

N

∑
i=1

Ĉi − Ci

Ci
(7)

where Ci, and Ĉi are the real and predicted concentration in the ith sample, Ci and Ĉi are
the mean of the real and the predicted concentrations of all the samples in the predicted
sets. N is the number of samples in the prediction set.

3.4. The Calibration and Prediction Sample Sets

The samples for the calibration and prediction sets were prepared using seawater
samples collected in the Changjiang estuary with known concentrations of NO3

−, NO2
−,

and salinity spiked with NO3
− and NO2

− standard solutions. An experimental design
was used to construct the calibration set to provide a good prediction. As shown in Table 1,
34 samples were selected as the training and the prediction set, which included one-, two-
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and three-components of NO3
−, NO2

−, and salinity with various concentrations. For the
prediction set of 20 samples, their compositions were randomly designed within similar
ranges of NO3

−, NO2
−, and salinity in the training set.

Table 1. Composition of the calibration and prediction samples.

Calibration Set Samples

No. NO3− (µM) NO2− (µM) Salinity
(psu) No. NO3− (µM) NO2− (µM) Salinity

(psu)

1 0.00 0.00 0.00 18 0.97 0.00 33.24
2 0.50 0.00 0.00 19 0.00 9.15 12.33
3 1.98 0.00 0.00 20 0.00 1.93 26.08
4 9.92 0.00 0.00 21 0.00 0.50 33.56
5 49.61 0.00 0.00 22 4.75 0.96 32.44
6 0.00 0.50 0.00 23 20.89 5.30 26.76
7 0.00 2.01 0.00 24 0.95 0.97 26.08
8 0.00 10.06 0.00 25 5.25 1.06 17.94
9 0.00 20.12 0.00 26 11.67 2.96 19.94
10 0.00 0.00 6.78 27 8.27 1.05 14.13
11 0.00 0.00 16.95 28 25.44 10.32 13.91
12 0.00 0.00 27.12 29 4.75 0.96 8.11
13 0.00 0.00 33.90 30 11.81 2.40 10.09
14 4.75 0.96 0.00 31 20.89 5.30 8.92
15 20.89 5.30 0.00 32 52.22 10.59 8.92
16 55.12 0.00 15.07 33 85.62 2.22 1.51
17 9.45 0.00 25.83 34 26.85 6.69 8.86

Prediction Set Samples

1 9.23 1.17 12.61 11 67.18 11.04 7.04
2 0.49 0.49 33.24 12 71.87 4.86 20.69
3 4.61 2.34 25.23 13 66.87 5.07 20.54
4 11.02 2.79 30.13 14 18.66 0.52 9.58
5 27.54 7.95 9.32 15 32.56 15.97 3.56
6 34.20 6.65 12.59 16 12.35 8.68 23.98
7 43.52 8.50 10.06 17 29.95 3.76 32
8 39.12 14.6 11.25 18 56.71 3.56 12.54
9 23.24 4.26 29.32 19 18.11 2.83 23.65
10 9.68 4.05 11.23 20 35.9 2.91 26.57

4. Results and Discussion
4.1. Selection of the Optimal Number of Factors

The number of factors, or latent variables, is an important parameter governing the
performance of the PLS model. The introduction of an unnecessary number of factors may
result in the overfitting of the calibration curve. To select the number of latent variables
in PLS regression, a cross-validation procedure of leaving out one sample at a time was
employed for PLS in order to model the compositions without overfitting the data [22,26,45].
From the set of 34 calibration spectra, the PLS calibration was performed on 33 spectra.
Using this calibration, the concentration of the compounds in the sample left out was
predicted. This process was repeated 34 times until each calibration sample had been
left out once during the calibration process. The concentration predicted for each sample
was then compared with its known concentration. The sum of the squared concentration
prediction errors for all calibration samples (prediction error sum of squares (PRESS)) was
used to determine how well a particular PLS model fitted the concentration data. This is
defined in Equation (7).

One reasonable choice for the optimum number of factors (h) would be the number
that yielded a minimum PRESS value. However, in many cases, the minimum PRESS value
resulted in the overfitting of the data, given that it is based on a finite number of samples
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and thus subject to error [22,43]. A frequently used methodology to determine h is based on
both the value of PRESS and a Q2 threshold, defined as follows (Equations (8)–(10)) [46,47].

PRESSh =
n

∑
i=1

(
Ci − Ĉh(−i)

)2
(8)

RESSh−1 =
n

∑
i=1

(
Ci − Ĉ(h−1)i

)2
(9)

Q2
h = 1 − PRESSh

RESS(h−1)
(10)

where PRESSh is the predictive residual error sum of squares when the number of compo-
nents is equal to h. RESSh−1 is the residual sum of squares when the number of components
is h−1. Ci is the real concentration of the analyte and Ĉh(−i) is the fitting concentration of
the analyte in the ith sample computed by the PLS regression after deleting the ith sample
and using h factors. Ĉ(h−1)i is the fitting concentration of the analyte in the ith sample
computed by the PLS after using all the sample points and h−1 factors.

The factor h is considered significant (p ≤ 0.05) for the prediction [43,44].√
PRESSh ≤ 0.95

√
RESSh−1 � Q2

h ≥ 0.0975 (11)

When Qh
2 is less than 0.0975, adding another factor does not improve model precision.

For the PLS1 model, a cross-validation procedure was run three times for NO3
−, NO2

−,
and salinity separately; thus, the factors were also calculated for NO3

−, NO2
−, and salinity

separately. For the PLS2 model, the cross-validation was run only once and the number
of factors were calculated only once for NO3

−, NO2
−, and salinity simultaneously. Take

the wavelength range of 215–240 nm as an example; the PRESS and Qh
2 of PLS1 and PLS2

models are shown in Table 2. It can be seen that both the PLS1 and PLS2 models give the
same factors of 4 for NO3

−, NO2
−, and salinity. The cumulative contribution rates for

4 factors reached 99.99%.

Table 2. The Qh
2 values of cross-validation with the number of factors.

Factors 1 2 3 4 5 6 7

PLS1

PRESS-NO3
− 1962 1391 327.6 2.39 2.51 2.53 3.96

Qh
2-NO3

− - 0.17 0.77 0.99 −0.36 −0.75 −2.13
Cumulative Contribution Rate

-NO3
− (%) 91.34 99.50 99.95 99.99

PRESS-NO2
− 614.3 504.6 191.7 7.24 8.11 9.13 5.81

Qh
2-NO2

− - 0.02 0.48 0.95 −1.30 −2.59 −2.35
Cumulative Contribution Rate

-NO2
− (%) 90.52 99.60 99.95 99.99

PRESS-Salinity 3552 951.9 61.34 9.64 11.67 12.01 11.67
Qh

2-Salinity - 0.72 0.92 0.77 −0.53 −0.78 −1.00
Cumulative Contribution Rate

-Salinity (%) 76.89 99.62 99.96 99.99

PLS2

PRESS 7432 3651 543.4 19.27 21.89 23.17 18.79
Qh

2 - 0.47 0.80 0.95 −0.68 −0.95 −0.91
Cumulative Contribution

Rate (%) 91.30 99.62 99.95 99.99
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4.2. Wavelength Selection

The wavelength selection is carried out to choose a subset of spectral channels with
which the established calibration model can give the minimum errors of the prediction.
The optimal wavelength selection offers two clear benefits. Firstly, it has been shown
that the inclusion of uninformative wavelengths in the training process negatively affects
the accuracy of predictions and model interpretability [48,49]. Secondly, from a more
practical point of view, the identification of a few wavelengths, or regions of the optical
spectrum, that contain information about chemical species, significantly reduces the time
and cost associated with their measurement and enables the development of portable and
high-speed optical sensors.

We used interval partial least squares (iPLS) to optimize the wavelength selection
proposed by Norgaard et al. (2000) [50], which is to split the spectrum into different
intervals and treat each interval as a variable, then the RMSEP, R2, and RE for each interval
was calculated. The interval with maximal R2, and minimum RMSEP and RE, was chosen
as the optimal wavelength interval. Here, the 200–300nm wavelength is equally divided
into equal subintervals of 16 nm, 200–215 nm, 210–225, 220–235, . . . , 285–300 nm. Then the
wavelength range with the lowest RMSEP value was chosen for further optimization using
one-sided symmetrical optimization. The results of the PLS2 for several wavelength ranges
are shown in Figure 2. This suggests that the optimal wavelength interval is 215–240 nm,
which gives the maximal R2, and minimal RE and RMSEP, for NO3

−, NO2
−, and salinity

simultaneously. The plots of these predicted concentrations versus actual concentrations
using the PLS2 model are shown in Figure 3. As can be seen, the predicted NO3

−, NO2
−,

and salinity predicted are linearly correlated with the actual values, and all the correlation
coefficients are > 0.98 (Figure 3). As both the PLS1 and PLS2 models have 4 factors, the
results of the PLS1 are the same as the PLS2. For reducing the complexity and computation
time of the model, we recommend using the PLS2 model and wavelength of 215–240 nm
for calibration and prediction.

4.3. Comparison of PLS2 and CLS Regressions

For comparison, we also built a CLS model to fit the NO3
−, NO2

−, and salinity based
on Equation (4). The results obtained for the samples of the prediction set are shown
in Figure 3. For NO3

− and salinity, the results of CLS are also satisfactory. It is similar
to previous studies [9,40,42], in which different CLS algorithms were used to fit NO3

−

concentrations and salinity in seawater. However, for several samples with low NO2
−

concentrations, the CLS model is less predictive than the PLS2 model. The reason for this
may be that NO2

− concentrations in seawater are significantly lower than NO3
−, and thus,

NO2
− is more susceptible to the interference of sea salt, CDOM, hydrogen sulfide, and

other unknown substances. Instead, PLS regression, as an indirect chemometric method,
can lead to robust results even if not all the constituents are known [22,23].

4.4. Evaluation of the PLS2 Model

From the experimental data illustrated in Table 1, NO3
−, NO2

−, and salinity within
the range of 0–85.62 µM, 0–20.12 µM, and 0–33.90 psu can be determined accurately by
the PLS model. When NO3

− concentration is higher than 100 µM, we suggest using a
cuvette with a 1.0 or 2.0 cm pathlength instead of 3.0 cm in case the absorbance tends
to saturate. To further evaluate the accuracy of the PLS2 model, recovery studies were
carried out on seawater samples, to which known amounts of NO3

− and NO2
− were

added (Table 3). The percentage recovery for spiked samples ranged between 80 and
110%. The comparatively higher deviations from spiked concentrations were obtained
from samples with low NO3

− or NO2
− concentrations. The detection limits of NO3

− and
NO2

− in seawater were calculated as three times the standard deviation of 10 replicate
analyses of a low-nutrient (surface) seawater. The standard deviation of the measurements
was 0.07 and 0.10 µM for NO3

− and NO2
−, which gives NO3

− and NO2
− detection

limits of 0.21 and 0.30 µM, respectively. The relative standard deviations for 10 repetitive
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analyses (n = 10) of a standard solution (3.71 µM NO3
− + 1.48 µM NO2

−) were 3.16%
and 7.42%, and another solution of 20.75 µM NO3

− and 6.28 µM NO2
− gave the relative

standard deviation of 0.61% and 2.39%. Hence, the proposed method is quite precise for
the quantitative determination of NO3

− and NO2
− in seawater, although the detection

limits are comparatively higher than that of most colorimetric methods based on the Griess
reaction [4–6]. Most importantly, it offers a simple, fast, and reagent-free method for the
simultaneous determination of NO3

− and NO2
−.

4.5. Application and Comparison of the Predicted Results with Conventional
Wet-Chemical Analyses

To evaluate the analytical applicability of the proposed PLS2 model, it was applied to
the simultaneous determination of NO3

−, NO2
−, and salinity in water samples collected

from the Changjiang estuary. These samples were filtered using 0.2µm polycarbonate
filters to eliminate the interference from turbidity. For comparison, the NO3

− and NO2
−

concentrations were also measured by conventional wet-chemical analyses (colorimetric
Griess assay). The results are shown in Table 4, which suggests the good agreement of
both methods.
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Table 3. Recoveries of NO3
− and NO2

− in spiked seawater samples.

Spiked (µM) Found (µM) Recovery (%)

NO3− NO2− NO3− NO2− NO3− NO2−

3.53 2.10 3.22 1.92 109.74 109.36
10.95 14.20 11.23 13.83 97.50 102.66
19.46 1.94 18.83 2.43 103.36 79.97
28.15 6.28 29.26 6.35 96.22 98.85
28.78 3.83 28.18 4.27 102.11 89.75
37.82 5.66 37.17 5.98 101.76 94.69
46.62 7.44 45.90 7.45 101.57 99.93
55.17 9.18 54.54 9.26 101.16 99.13
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Table 4. The predicted values of NO3
−, NO2

−, and salinity (average ± 1 standard deviation of three
replicate analyses) using the PLS2 model in seawater samples of the Changjiang Estuary.

Sample NO3− (µM) NO2− (µM) Salinity (psu)

1 11.96 ± 0.13 (10.55 ± 0.54) 4.63 ± 0.13 (3.59 ± 0.12) 23.53 ± 0.04
2 75.73 ± 0.32 (74.68 ± 1.26) 3.73 ± 0.17 (3.14 ± 0.09) 17.07 ± 0.37
3 51.60 ± 0.26 (52.19 ± 1.77) 2.47 ± 0.19 (1.57 ± 0.21) 21.30 ± 0.43
4 33.36 ± 0.08 (31.85 ± 0.89) 7.41 ± 0.08 (6.53 ± 1.12) 23.83 ± 0.01
5 19.36 ± 0.12 (20.73 ± 0.63) 1.27 ± 0.11 (0.67 ± 0.09) 35.29 ± 0.21
6 21.27 ± 0.11 (20.06 ± 0.42) 0.11 ± 0.16 (0.26 ± 0.04) 29.13 ± 0.21
7 73.67 ± 0.09 (72.12 ± 1.02) 0.47 ± 0.13 (1.03 ± 0.13) 3.66 ± 0.04
8 14.18 ± 0.14 (12.53 ± 0.56) −0.35 ± 0.11 (0.49 ± 0.08) 31.99 ± 0.21
9 68.88 ± 0.28 (67.18 ± 1.55) 5.92 ± 0.22 (4.25 ± 0.06) 20.56 ± 0.16

Notes: NO3
− and NO2

− concentrations shown in brackets were determined by the Griess assay.

It should be noted that the in situ UV absorption spectrum, which is obtained at
different temperatures, should be corrected according to the temperature dependence of
bromide or sea salt, as suggested by Sakamoto et al. (2009, 2017) [41,51]. However, here,
we measured the UV absorption spectra in a laboratory at room temperature (~25 ◦C).
Therefore, there is no need to perform the temperature and pressure correction.

5. Conclusions

A direct, reagent-free, ultraviolet spectroscopic was introduced for the simultaneous
determination of NO3

−, NO2
−, and salinity in seawater. A PLS model was built for the

resolution of the high overlapping spectra. This method has detection limits of 0.21 and
0.3 µM for NO3

− and NO2
−. It can be successfully used to determine NO3

−, NO2
−, and

salinity, especially in estuarine and coastal waters with varying CDOM characteristics
and different salinities. The simplicity, precision, and fast response time suggest that the
proposed PLS model can be a valuable and cheap alternative to other chemical methods
and can be used to build NO3

− and NO2
− sensors for seawater.

Supplementary Materials: All data-processing scripts for this article can be found online.

Author Contributions: Conceptualization, H.W. and A.J.; Funding acquisition, H.W.; Investigation,
L.W. and A.J.; Methodology, A.J. and L.W.; Software, A.J.; Supervision, H.W.; Writing—original draft,
A.J. and H.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by financial support from the National Natural Science Founda-
tion of China (NSFC 42076062).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors gratefully acknowledge Michael Ellwood from the Australian
National University for the stimulating method and discussions. We sincerely thank three anonymous
reviewers and editors whose insightful comments have greatly improved the manuscript.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Arrigo, K.R. Marine microorganisms and global nutrient cycles. Nature 2005, 437, 349–355. [CrossRef] [PubMed]
2. Falkowski, P.G.; Barber, R.T.; Smetacek, V.V. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science 1998,

281, 200–207. [CrossRef] [PubMed]
3. Vollenweider, R.A.; Marchetti, R.; Viviani, R. The problems of the Emilia Romagna coastal waters: Facts and interpretations. Mar.

Coast. Eutrophication 1992, 21–33. [CrossRef]
4. Ma, J.; Adornato, L.; Byrne, R.H.; Yuan, D. Determination of nanomolar levels of nutrients in seawater. Trends Anal. Chem. 2014,

60, 1–15. [CrossRef]

http://doi.org/10.1038/nature04159
http://www.ncbi.nlm.nih.gov/pubmed/16163345
http://doi.org/10.1126/science.281.5374.200
http://www.ncbi.nlm.nih.gov/pubmed/9660741
http://doi.org/10.1016/B978-0-444-89990-3.50012-2
http://doi.org/10.1016/j.trac.2014.04.013


Molecules 2021, 26, 3685 11 of 12

5. Singh, P.; Singh, M.K.; Beg, Y.R.; Nishad, G.R. A review on spectroscopic methods for determination of nitrite and nitrate in
environmental samples. Talanta 2019, 191, 364–381. [CrossRef] [PubMed]

6. Wang, Q.H.; Yu, L.J.; Liu, Y.; Lin, L.; Lu, R.G.; Zhu, J.P.; He, L.; Lu, Z.L. Methods for the detection and determination of nitrite and
nitrate: A review. Talanta 2017, 165, 709–720. [CrossRef]

7. Armstrong, F.A.J. Determination of Nitrate in Water Ultraviolet Spectrophotometry. Anal. Chem. 1963, 35, 1292–1294. [CrossRef]
8. American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation

(WEF). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA,
1912.

9. Johnson, K.S.; Coletti, L.J. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide
and bisulfide in the ocean. Deep Sea Res. Part I 2002, 49, 1291–1305. [CrossRef]

10. Thomas, O.; Gallot, S.; Mazas, N. Ultraviolet multiwavelength absorptiometry (UVMA) for the examination of natural waters
and waste waters: Part II: Determination of nitrate. Fresenius J. Anal. Chem. 1990, 338, 238–240. [CrossRef]

11. Huebsch, M.; Grimmeisen, F.; Zemann, M.; Fenton, O.; Richards, K.G.; Jordan, P.; Sawarieh, A.; Blum, P.; Goldscheider, N.
Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater. Hydrol. Earth
Syst. Sci. 2015, 19, 1589–1598. [CrossRef]

12. Zielinski, O.; Fiedler, B.; Heuermann, R.; Kortzinger, A.; Munderloh, K. A new nitrate continuous observation sensor for
autonomous sub-surface applications: Technical design and first results. In Proceedings of the Oceans 2007, Aberdeen, UK, 18–21
June 2007; pp. 1–4.

13. Gruber, N. Chapter 1—The Marine Nitrogen Cycle: Overview and Challenges. In Nitrogen in the Marine Environment, 2nd ed.;
Capone, D.G., Bronk, D.A., Mulholland, M.R., Carpenter, E.J., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 1–50.

14. Casciotti, K.L.; Böhlke, J.K.; Mcilvin, M.R.; Mroczkowski, S.J.; Hannon, J.E. Oxygen Isotopes in Nitrite: Analysis, Calibration, and
Equilibration. Anal. Chem. 2007, 79, 2427–2436. [CrossRef] [PubMed]

15. Casciotti, K.L.; Buchwald, C.; Mcilvin, M. Implications of nitrate and nitrite isotopic measurements for the mechanisms of
nitrogen cycling in the Peru oxygen deficient zone. Deep Sea Res. Part I 2013, 80, 78–93. [CrossRef]

16. Hu, H.; Bourbonnais, A.; Larkum, J.; Bange, H.W.; Altabet, M.A. Nitrogen cycling in shallow low-oxygen coastal waters off Peru
from nitrite and nitrate nitrogen and oxygen isotopes. Biogeosciences 2016, 13, 7257–7299. [CrossRef]

17. Lam, P.; Lavik, G.; Jensen, M.M.; Vossenberg, J.V.D.; Schmid, M.; Woebken, D.; Gutiérrez, D.; Amann, R.; Jetten, M.S.M.; Kuypers,
M.M.M. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Nat. Acad. Sci. USA 2009, 106, 4752–4757.
[CrossRef]

18. Morrison, J.M.; Codispoti, L.A.; Smith, S.L.; Wishner, K.; Flagg, C.; Gardner, W.D.; Gaurin, S.; Naqvi, S.W.A.; Manghnani, V.;
Prosperie, L. The oxygen minimum zone in the Arabian Sea during 1995. Deep Sea Res. Part II 1999, 46, 1931. [CrossRef]

19. Langergraber, G.; Fleischmann, N.; Hofstaedter, F. A multivariate calibration procedure for UV/VIS spectrometric quantification
of organic matter and nitrate in wastewater. Water Sci. Technol. 2003, 47, 63–71. [CrossRef]

20. Rieger, L.; Langergraber, G.; Thomann, M.; Fleischmann, N.; Siegrist, H. Spectral in-situ analysis of NO2, NO3, COD, DOC and
TSS in the effluent of a WWTP. Water Sci. Technol. 2004, 50, 143–152. [CrossRef] [PubMed]

21. Rieger, L.; Vanrolleghem, P.A.; Langergraber, G.; Kaelin, D.; Siegrist, H. Long-term evaluation of a spectral sensor for nitrite and
nitrate. Water Sci. Technol. 2008, 57, 1563. [CrossRef]

22. Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration
methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [CrossRef]

23. Otto, M. Chemometrics: Statistics and Computer Application in Analytical Chemistry; Wiley-VCH Verlag GmbH: Weinheim, Ger-
many, 1999.

24. Beebe, K.R.; Kowalski, B.R. An Introduction to Multivariate Calibration and Analysis. Anal. Chem. 1987, 59, 1007A–1017A.
[CrossRef]

25. Martens, H.; Naes, T. Multivariate Calibration; Wiley & Sons: Chichester, UK, 1989.
26. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.

[CrossRef]
27. Manne, R. Analysis of Two PLS Algorithms for Multivariate Calibration. Chemom. Intell. Lab. Syst. 1987, 2, 187–197. [CrossRef]
28. Khajehsharifi, H.; Mousavi, M.F.; Ghasemi, J.; Shamsipur, M. Kinetic spectrophotometric method for simultaneous determination

of selenium and tellurium using partial least squares calibration. Anal. Chim. Acta 2004, 512, 369–373. [CrossRef]
29. Tewari, J.; Strong, R.; Boulas, P. At-line determination of pharmaceuticals small molecule’s blending end point using chemometric

modeling combined with Fourier transform near infrared spectroscopy. Spectrochim. Acta Part A 2017, 173, 886–891. [CrossRef]
30. Abdel-Rahman, E.M.; Mutanga, O.; Odindi, J.; Adam, E.; Odindo, A.; Ismail, R. Estimating Swiss chard foliar macro- and

micronutrient concentrations under different irrigation water sources using ground-based hyperspectral data and four partial
least squares (PLS)-based (PLS1, PLS2, SPLS1 and SPLS2) regression algorithms. Comput. Electron. Agric. 2017, 132, 21–33.
[CrossRef]

31. Andries, J.P.M.; Heyden, Y.V.; Buydens, L.M.C. Predictive-property-ranked variable reduction with final complexity adapted
models in partial least squares modeling for multiple responses. Anal. Chem. 2013, 85, 5444–5453. [CrossRef]

32. Thurman, E.M. Organic Geochemistry of Natural Waters; M.Nijhoff/Dr. W. Junk Publishers: Dordrecht, The Netherlands, 1985.
33. Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994.

http://doi.org/10.1016/j.talanta.2018.08.028
http://www.ncbi.nlm.nih.gov/pubmed/30262072
http://doi.org/10.1016/j.talanta.2016.12.044
http://doi.org/10.1021/ac60202a036
http://doi.org/10.1016/S0967-0637(02)00020-1
http://doi.org/10.1007/BF00323015
http://doi.org/10.5194/hess-19-1589-2015
http://doi.org/10.1021/ac061598h
http://www.ncbi.nlm.nih.gov/pubmed/17295443
http://doi.org/10.1016/j.dsr.2013.05.017
http://doi.org/10.5194/bg-13-1453-2016
http://doi.org/10.1073/pnas.0812444106
http://doi.org/10.1016/S0967-0645(99)00048-X
http://doi.org/10.2166/wst.2003.0086
http://doi.org/10.2166/wst.2004.0682
http://www.ncbi.nlm.nih.gov/pubmed/15685990
http://doi.org/10.2166/wst.2008.146
http://doi.org/10.1021/ac00162a020
http://doi.org/10.1021/ac00144a725
http://doi.org/10.1016/S0169-7439(01)00155-1
http://doi.org/10.1016/0169-7439(87)80096-5
http://doi.org/10.1016/j.aca.2004.03.017
http://doi.org/10.1016/j.saa.2016.10.013
http://doi.org/10.1016/j.compag.2016.11.008
http://doi.org/10.1021/ac400339e


Molecules 2021, 26, 3685 12 of 12

34. Hansell, D.A.; Carlson, C.A. Biogeochemistry of Marine Dissolved Organic Matter; Academic Press: London, UK, 2014.
35. Nelson, N.B.; Siegel, D.A. The global distribution and dynamics of chromophoric dissolved organic matter. Annu. Rev. Mar. Sci.

2013, 5, 447–476. [CrossRef] [PubMed]
36. Twardowski, M.S.; Boss, E.; Sullivan, J.M.; Donaghay, P.L. Modeling the spectral shape of absorption by chromophoric dissolved

organic matter. Mar. Chem. 2004, 89, 69–88. [CrossRef]
37. Guenther, E.A.; Johnson, K.S.; Coale, K.H. Direct ultraviolet spectrophotometric determination of total sulfide and iodide in

natural waters. Anal. Chem. 2001, 73, 3481–3487. [CrossRef] [PubMed]
38. Helms, J.R.; Stubbins, A.; Ritchie, J.D.; Minor, E.C.; Kieber, D.J.; Mopper, K. Absorption spectral slopes and slope ratios as

indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 2008, 53,
955–969. [CrossRef]

39. Li, P.; Hur, J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review.
Crit. Rev. Environ. Sci. Technol. 2017, 47, 131–154. [CrossRef]

40. Frank, C.; Meier, D.; Voß, D.; Zielinski, O. Computation of nitrate concentrations in coastal waters using an in situ ultraviolet
spectrophotometer: Behavior of different computation methods in a case study a steep salinity gradient in the southern North
Sea. Methods Oceanogr. 2014, 9, 34–43. [CrossRef]

41. Sakamoto, C.M.; Johnson, K.S.; Coletti, L.J. Improved algorithm for the computation of nitrate concentrations in seawater using
an in situ ultraviolet spectrophotometer. Limnol. Oceanogr. Methods 2009, 7, 32–143. [CrossRef]

42. Zielinski, O.; Voß, D.; Saworski, B.; Fiedler, B.; Körtzinger, A. Computation of nitrate concentrations in turbid coastal waters
using an in situ ultraviolet spectrophotometer. Sea Res. 2011, 65, 456–460. [CrossRef]

43. Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press:
Cambridge, UK, 1986.

44. Sen, A. Srivastava, M. Unequal Variances, Regression Analysis; Springer: Berlin, Germany, 1990; pp. 111–131.
45. Stone, M.P. Cross-validatory choice and assessment of statistical predictions. Inst. Phys. Pub. 1974, 36, 111–133. [CrossRef]
46. Tenenhaus, M. La Régression PLS: Théorie et Pratique; Editions Technip: Paris, France, 1998.
47. Abdi, H. Partial least squares regression and projection on latent structure regression (PLS-regression). Comput. Stat. 2010, 2,

97–106. [CrossRef]
48. Chang, H.; Zhu, L.; Lou, X.; Meng, X.; Guo, Y.; Wang, Z. Local Strategy Combined with a Wavelength Selection Method for

Multivariate Calibration. Sensors 2016, 16, 827. [CrossRef] [PubMed]
49. Mamouei, M.; Budidha, K.; Baishya, N.; Qassem, M.; Kyriacou, P. Comparison of wavelength selection methods for in-vitro

estimation of lactate: A new unconstrained, genetic algorithm-based wavelength selection. Sci. Rep. 2020, 10, 16905. [CrossRef]
[PubMed]

50. Nielsen, J.P.; Munck, L.; Engelsen, S.B.; Norgaard, L.; Saudland, A.; Wagner, J. Interval Partial Least-Squares Regression (iPLS): A
Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosc. 2000, 54, 413–419.

51. Sakamoto, C.M.; Johnson, K.S.; Coletti, L.J.; Jannasch, H.W. Pressure correction for the computation of nitrate concentrations in
seawater using an in situ ultraviolet spectrophotometer. Limnol. Ocanogr. Methods 2017, 15, 897–902. [CrossRef]

http://doi.org/10.1146/annurev-marine-120710-100751
http://www.ncbi.nlm.nih.gov/pubmed/22809178
http://doi.org/10.1016/j.marchem.2004.02.008
http://doi.org/10.1021/ac0013812
http://www.ncbi.nlm.nih.gov/pubmed/11476251
http://doi.org/10.4319/lo.2008.53.3.0955
http://doi.org/10.1080/10643389.2017.1309186
http://doi.org/10.1016/j.mio.2014.09.002
http://doi.org/10.4319/lom.2009.7.132
http://doi.org/10.1016/j.seares.2011.04.002
http://doi.org/10.1111/j.2517-6161.1974.tb00994.x
http://doi.org/10.1002/wics.51
http://doi.org/10.3390/s16060827
http://www.ncbi.nlm.nih.gov/pubmed/27271636
http://doi.org/10.1038/s41598-020-73406-4
http://www.ncbi.nlm.nih.gov/pubmed/33037265
http://doi.org/10.1002/lom3.10209

	Introduction 
	Theory 
	PLS Regressions 
	Interference from CDOM 
	CLS Regression 

	Experimental 
	Reagents 
	Apparatus and Software 
	Model Validation 
	The Calibration and Prediction Sample Sets 

	Results and Discussion 
	Selection of the Optimal Number of Factors 
	Wavelength Selection 
	Comparison of PLS2 and CLS Regressions 
	Evaluation of the PLS2 Model 
	Application and Comparison of the Predicted Results with Conventional Wet-Chemical Analyses 

	Conclusions 
	References

